作出函數(shù)y=2|x+1|的圖象.
分析:法一 由函數(shù)解析式可得y=2|x+1|
=
(
1
2
)x+1,(x<-1)
2x+1,(x≥-1)

其圖象分成兩部分,一部分是將y1=(
1
2
)x
(x<-1)的圖象作出,將其圖象沿x軸的負(fù)方向平移一個單位而得到y=(
1
2
)x+1
(x<-1);推理作出:另一部分y=2x+1(x≥-1)的圖象.
法二 先作出y=2x(x≥0)的圖象,再關(guān)于y軸對稱即得y=2|x|的圖象,再將y=2|x|的圖象左移一個單位即可得到y(tǒng)=2|x+1|的圖象.
解答:解:法一 由函數(shù)解析式可得y=2|x+1|
=
(
1
2
)x+1,(x<-1)
2x+1,(x≥-1)

其圖象分成兩部分,一部分是將y1=(
1
2
)x
(x<-1)的圖象作出,將其圖象沿x軸的負(fù)方向平移一個單位而得到y=(
1
2
)x+1
(x<-1);
另一部分是將y=2x+1(x≥-1)的圖象作出,而它的圖象可以看作將y=2x的圖象沿x軸的負(fù)方向平移一個單位而得到,如圖所示.
法二 先作出y=2x(x≥0)的圖象,再關(guān)于y軸對稱即得y=2|x|的圖象,再將y=2|x|的圖象左移一個單位即可得到y(tǒng)=2|x+1|的圖象,如法一中圖所示.
點評:熟練掌握指數(shù)函數(shù)的圖象與性質(zhì)、函數(shù)變換的方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)作出函數(shù)y=-x2+|x|+1的圖象,并求出函數(shù)的值域.
(2)若方程a=-x2+|x|+1有4個解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

作出函數(shù)y=2|x-1|-3|x|的圖像,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

作出函數(shù)y=2|x-1|-3|x|的圖像,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《2.1 指數(shù)函數(shù)》2013年同步練習(xí)2(解析版) 題型:解答題

作出函數(shù)y=2|x+1|的圖象.

查看答案和解析>>

同步練習(xí)冊答案