若焦點在軸上的橢圓的離心率為,則=(    )

A.        B.           C.        D.

 

【答案】

D

【解析】解:因為焦點在軸上的橢圓的離心率為,選D

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆吉林省長春市高二下期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

若焦點在軸上的橢圓的離心率為,則等于(    )

A.             B.              C.             D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省湛江市高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:選擇題

.若焦點在軸上的橢圓的離心率為,則等于(   )

A.             B.             C.             D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省汕頭市高二第一學(xué)期期末考試文科數(shù)學(xué)試卷 題型:選擇題

若焦點在軸上的橢圓的離心率為,則m的值為(    )

 A   1                B                C              D 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010--2011學(xué)年陜西省理科數(shù)學(xué)試題(選修2-1) 題型:選擇題

若焦點在軸上的橢圓的離心率為,則m=(  )

A.        B.           C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

【解析】第一問利用設(shè)橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為,

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為,

所以

所以

,

因為,即,

所以

所以,解得

因為A,B為不同的兩點,所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

同步練習(xí)冊答案