【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.
【答案】
(1)解:∵函數(shù)f(x)=sin(3x+ ),令 2kπ﹣ ≤3x+ ≤2kπ+ ,k∈Z,
求得 ﹣ ≤x≤ + ,故函數(shù)的增區(qū)間為[ ﹣ , + ],k∈Z
(2)解:由函數(shù)的解析式可得 f( )=sin(α+ ),又f( )= cos(α+ )cos2α,
∴sin(α+ )= cos(α+ )cos2α,即sin(α+ )= cos(α+ )(cos2α﹣sin2α),
∴sinαcos +cosαsin = (cosαcos ﹣sinαsin )(cosα﹣sinα)(cosα+sinα)
即 (sinα+cosα)= (cosα﹣sinα)2(cosα+sinα),
又∵α是第二象限角,∴cosα﹣sinα<0,
當(dāng)sinα+cosα=0時(shí),tanα=﹣1,sinα= ,cosα=﹣ ,此時(shí)cosα﹣sinα=﹣ .
當(dāng)sinα+cosα≠0時(shí),此時(shí)cosα﹣sinα=﹣ .
綜上所述:cosα﹣sinα=﹣ 或﹣ .
【解析】(1)令 2kπ﹣ ≤3x+ ≤2kπ+ ,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.(2)由函數(shù)的解析式可得 f( )=sin(α+ ),又f( )= cos(α+ )cos2α,可得sin(α+ )= cos(α+ )cos2α,化簡(jiǎn)可得 (cosα﹣sinα)2= .再由α是第二象限角,cosα﹣sinα<0,從而求得cosα﹣sinα 的值.
【考點(diǎn)精析】通過靈活運(yùn)用兩角和與差的余弦公式和正弦函數(shù)的單調(diào)性,掌握兩角和與差的余弦公式:;正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2002年北京國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo),是以中國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)而設(shè)計(jì)的,弦圖用四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在充分競(jìng)爭(zhēng)的市場(chǎng)環(huán)境中,產(chǎn)品的定價(jià)至關(guān)重要,它將影響產(chǎn)品的銷量,進(jìn)而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場(chǎng)經(jīng)驗(yàn),總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個(gè)銷售季度的銷量單位:萬(wàn)件與售價(jià)單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系.
當(dāng)產(chǎn)品A的售價(jià)在什么范圍內(nèi)時(shí),能使得其銷量不低于5萬(wàn)件?
當(dāng)產(chǎn)品A的售價(jià)為多少時(shí),總利潤(rùn)最大?注:總利潤(rùn)銷量售價(jià)單件成本
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=sin(2x+1)的圖象,只需把y=sin2x的圖象上所有的點(diǎn)( )
A.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)1個(gè)單位長(zhǎng)度
D.向右平行移動(dòng)1個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】射擊測(cè)試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測(cè)試?yán)塾?jì)得分,如果的值不低于3分就認(rèn)為通過測(cè)試,立即停止射擊;否則繼續(xù)射擊,但一次測(cè)試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。
(1)如果該射手選擇方案1,求其測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;
(2)該射手選擇哪種方案通過測(cè)試的可能性大?請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂:每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得﹣200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為 ,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn).若干盤游戲后,與最初分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】說明:請(qǐng)同學(xué)們?cè)冢?/span>A)(B)兩個(gè)小題中任選一題作答.
(A)小明計(jì)劃搭乘公交車回家,經(jīng)網(wǎng)上公交實(shí)時(shí)平臺(tái)查詢,得到838路與611路公交車預(yù)計(jì)到達(dá)公交站的時(shí)間均為8:30,已知公交車實(shí)際到達(dá)時(shí)間與網(wǎng)絡(luò)報(bào)時(shí)誤差不超過10分鐘.
(1)若小明趕往公交站搭乘 611 路,預(yù)計(jì)小明到達(dá)站時(shí)間在8:20到8:35,求小明比車早到的概率;
(2)求兩輛車到達(dá)站時(shí)間相差不超過5分鐘的概率.
(B)小明計(jì)劃搭乘公交車回家,經(jīng)網(wǎng)上公交實(shí)時(shí)平臺(tái)查詢,得到838路與611路公交車預(yù)計(jì)到達(dá)公交站的之間均為8:30.已知公交車實(shí)際到達(dá)時(shí)間與網(wǎng)絡(luò)報(bào)時(shí)誤差不超過10分鐘
(1)求兩輛車到達(dá)站時(shí)間相差不超過5分鐘的概率
(2)求838路與611路公交車實(shí)際到站時(shí)間與網(wǎng)絡(luò)報(bào)時(shí)的誤差之和不超過10分鐘的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題函數(shù)在上是減函數(shù),命題 ,.
(1)若為假命題,求實(shí)數(shù)的取值范圍;
(2)若“”為真命題,且“或”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com