已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點的連線的斜率小于l,求證

(1);(2);(3)

解析試題分析:(1)由函數(shù)的圖象切x軸于點(2,0),得,解方程組可得的值.
(2)由于,根據(jù)導(dǎo)數(shù)的幾何意義,任意不同的兩點的連線的斜率小于l,對任意的恒成立,利用分離變量法,轉(zhuǎn)化為對任意的恒成立,進一步轉(zhuǎn)化為函數(shù)的最值問題;
(3)設(shè),則
恒成立
將上不等式看成是關(guān)于的一元二次不等式即可.
解:(1)
,得
,得
(2)
對任意的,即對任意的恒成立
等價于對任意的恒成立


,當(dāng)且僅當(dāng)時“=”成立,
上為增函數(shù),

(3)設(shè),則
,對恒成立
,對恒成立
,對恒成立

解得
考點:1、導(dǎo)數(shù)的幾何意義;2、等價轉(zhuǎn)化的思想;3、二次函數(shù)與一元二次一不等式問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出所有m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設(shè)).
(1)試將表示為的函數(shù); (2)若,且時,取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域?qū)佋O(shè)塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S平方米.
(1)分別寫出用x表示y和S的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若,對任意的,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)上的最大值和最小值;
(2)求證:當(dāng)時,函數(shù)的圖像在的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:對于函數(shù),若存在非零常數(shù),使函數(shù)對于定義域內(nèi)的任意實數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個廣義周期和周距;
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域為時,求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求曲線在點處的切線方程;
(2)求的極值;
(3)若函數(shù)的圖象與函數(shù)的圖象在區(qū)間上有公共點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案