【題目】已知橢圓的右焦點為,過軸的垂線交橢圓于點(點軸上方),斜率為的直線交橢圓,兩點,過點作直線交橢圓于點,且,直線軸于點.

(1)設(shè)橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.

(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.

【答案】(1);(2)見解析

【解析】

1,得求解即可(2),,與橢圓聯(lián)立消去y,由韋達定理得進而得,由k的方程求解即可

1)由題 ,,所以,

整理得,

解得(舍去),

所以.

2)由(1)知,,即,

聯(lián)立,消去,得.

設(shè)點的橫坐標為,由韋達定理得,即,

所以.

因為,所以,

同理,.

若有,則,

,而,所以此方程無解,故不存在符合條件的k.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.時,命題“若,則”為真命題

D.命題“”的否定是“,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)的外接球,,點在線段上,且,過點作球的截面,則所得截面圓面積的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是偶函數(shù),.

(1)求的值,并判斷函數(shù)上的單調(diào)性,說明理由;

(2)設(shè),若函數(shù)的圖像有且僅有一個交點,求實數(shù)的取值范圍;

(3)定義在上的一個函數(shù),如果存在一個常數(shù),使得式子對一切大于1的自然數(shù)都成立,則稱函數(shù)為“上的函數(shù)”(其中,).試判斷函數(shù)是否為“上的函數(shù)”,若是,則求出的最小值;若不是,則說明理由.(注:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,則表格中共有51的填表方法種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為F1,F2,該橢圓與y軸正半軸交于點M,且△MF1F2是邊長為2的等邊三角形.

1)求橢圓的標準方程;

2)過點F2任作一直線交橢圓于A,B兩點,平面上有一動點P,設(shè)直線PA,PF2PB的斜率分別為k1,kk2,且滿足k1+k2=2k,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當,時,求函數(shù)的最大值;

2)若函數(shù)存在唯一零點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了獲得更大的收益,每年要投入一定的資金用于廣告促銷,經(jīng)調(diào)查,每年投入廣告費t百萬元,可增加銷售額約為百萬元.

Ⅰ)若該公司將一年的廣告費控制在4百萬元之內(nèi),則應投入多少廣告費,才能使該公司由此增加的收益最大?

Ⅱ)現(xiàn)該公司準備共投入5百萬元,分別用于廣告促銷和技術(shù)改造,經(jīng)預測,每投入技術(shù)改造費百萬元,可增加的銷售額約為百萬元,請設(shè)計一個資金分配方案,使該公司由此增加的收益最大.

(注:收益=銷售額-投入,這里除了廣告費和技術(shù)改造費,不考慮其他的投入)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)n為正整數(shù),集合A=對于集合A中的任意元素,

M=

n=3, MM的值

n=4,設(shè)BA的子集且滿足對于B中的任意元素,相同時,M是奇數(shù);不同時M是偶數(shù).求集合B中元素個數(shù)的最大值;

給定不小于2n設(shè)BA的子集,且滿足對于B中的任意兩個不同的元素

M=0.寫出一個集合B,使其元素個數(shù)最多并說明理由.

查看答案和解析>>

同步練習冊答案