數(shù)列的前項和為,數(shù)列是首項為,公差為的等差數(shù)列,且成等比數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,求數(shù)列的前項和

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

試題分析:(Ⅰ)通過討論時,,驗證,是否滿足上式,確定得到數(shù)列{}的通項公式.進一步應用等比數(shù)列知識,建立公差的方程,確定得到.(Ⅱ)針對利用“裂項相消法”求得.

試題解析:(Ⅰ)當,時,      2分

,也滿足上式,

所以數(shù)列{}的通項公式為.  3分

,設公差為,則由成等比數(shù)列,

得      ,      4分

解得(舍去)或,     5分

所以數(shù)列的通項公式為.         6分

(Ⅱ)解:         8分

數(shù)列的前項和

         10分

  .   12分

考點:1、數(shù)列的概念,2、等差數(shù)列,3、等比數(shù)列,4、“裂項相消法”.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2009高考真題匯編3-數(shù)列 題型:解答題

(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(Ⅰ)求數(shù)列與數(shù)列的通項公式;
(Ⅱ)設數(shù)列的前項和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由;
(Ⅲ)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有。

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆廣東省中山市楊仙逸中學高三上學期聯(lián)考數(shù)學卷(理) 題型:解答題

若數(shù)列的前項和為,點均在函數(shù)的圖象上
(1)求數(shù)列的通項公式;
(2)若數(shù)列是首項為1,公比為的等比數(shù)列,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年上海市十三校高三12月聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知無窮數(shù)列的前項和為,且滿足,其中、、是常數(shù).

(1)若,,,求數(shù)列的通項公式;

(2)若,,且,求數(shù)列的前項和;

(3)試探究、滿足什么條件時,數(shù)列是公比不為的等比數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省中山市高三上學期聯(lián)考數(shù)學卷(理) 題型:解答題

若數(shù)列的前項和為,點均在函數(shù)的圖象上

(1)求數(shù)列的通項公式;

(2)若數(shù)列是首項為1,公比為的等比數(shù)列,求數(shù)列的前項和

 

查看答案和解析>>

同步練習冊答案