已知數(shù)列{an}前n項(xiàng)和Sn=2n-1,則數(shù)列{an}的奇數(shù)項(xiàng)的前n項(xiàng)的和是
4n-1
3
4n-1
3
分析:首先由數(shù)列{an}的前n項(xiàng)和Sn表示出其通項(xiàng)an,再判定該數(shù)列為等比數(shù)列,進(jìn)一步確定數(shù)列{an}的奇數(shù)項(xiàng)依然為等比數(shù)列,
最后利用等比數(shù)列的前n項(xiàng)和公式求之即可.
解答:解:an=Sn-Sn-1=2n-1-2n-1+1=2n-1(n≥2),
又a1=S1=1,所以an=2n-1(n∈N+),
所以數(shù)列{an}是1為首項(xiàng)、2為公比的等比數(shù)列,
則數(shù)列{an}的奇數(shù)項(xiàng)是1為首項(xiàng)、4為公比的等比數(shù)列,
所以它的前n項(xiàng)的和是
1-4n
1-4
=
4n-1
3

故答案為
4n-1
3
點(diǎn)評(píng):本題考查等比數(shù)列的判定方法及其前n項(xiàng)和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前 n項(xiàng)和為Sn,且Sn=n2
(1)求{an}的通項(xiàng)公式    
(2)設(shè) bn=
1anan+1
,求數(shù)列{bn}的前 n項(xiàng) 和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn和通項(xiàng)an滿足Sn=-
1
2
(an-1)

(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)試證明Sn
1
2
;
(3)設(shè)函數(shù)f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn=2an+2n
(Ⅰ)證明數(shù)列{
an
2n-1
}
是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求數(shù)列{bn}是否存在最大值項(xiàng),若存在,說明是第幾項(xiàng),若不存在,請(qǐng)說明理由;
(Ⅲ)設(shè)Tn=|S1|+|S2|+|S3|+…+|Sn|,試比較
Tn+Sn
2
2-n
1+n
an
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn=n2+2n,設(shè)bn=
1anan+1

(1)試求an
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案