【題目】已知函數(shù).

)當(dāng)時(shí),求曲線處的切線方程;

)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(I);(II)

【解析】

試題分析:(I)求出時(shí),,根據(jù)直線方程的點(diǎn)斜式可得切線方程;(II)當(dāng)時(shí),若不等式恒成立等價(jià)于,通過討論的范圍,得到其在上的單調(diào)性,分別求出求出最小值,得到的范圍,最后取并集即得實(shí)數(shù)的取值范圍.

試題解析:(I)當(dāng)時(shí),,

即曲線處的切線的斜率為,又,

所以所求切線方程為.

(II)當(dāng)時(shí),若不等式恒成立

易知

,則恒成立,在R上單調(diào)遞增;

,所以當(dāng)時(shí),,符合題意.

,由,解得,則當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增.

所以時(shí),函數(shù)取得最小值.

則當(dāng),即時(shí),則當(dāng)時(shí),,符合題意.

當(dāng),即時(shí),則當(dāng)時(shí),單調(diào)遞增,,不符合題意.

綜上,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ; :關(guān)于的方程的兩根之差的絕對(duì)值大于3.如果為真命題,為假命題,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對(duì)產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量Q(萬件)與廣告費(fèi)x(萬件)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為,而當(dāng)年產(chǎn)銷量相等。

(1)試將年利潤P(萬件)表示為年廣告費(fèi)x(萬元)的函數(shù);

(2)當(dāng)年廣告費(fèi)投入多少萬元時(shí),企業(yè)年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說明理由;

(3)估計(jì)居民月均用水量的中位數(shù)(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1求函數(shù)的極值點(diǎn);

2若函數(shù)在區(qū)間[2,6]內(nèi)有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),求曲線處的切線方程;

)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中a>0

1)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤不低于原來生產(chǎn)該批A產(chǎn)品的利潤,求的取值范圍;

2)若生產(chǎn)這批B產(chǎn)品的利潤始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓的一組等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開始按逆時(shí)針方向依次記錄個(gè)點(diǎn)的顏色,稱為該圓的一個(gè)階色序,當(dāng)且僅當(dāng)兩個(gè)階色序?qū)?yīng)位置上的顏色至少有一個(gè)不相同時(shí),稱為不同的階色序若某國的任意兩個(gè)階色序均不相同,則稱該圓為階魅力圓3階魅力圓中最多可有的等分點(diǎn)個(gè)數(shù)為

A.4 B.6 C.8 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人下棋比賽,規(guī)定誰比對(duì)方先多勝兩局誰就獲勝,比賽立即結(jié)束;若比賽進(jìn)行完6局還沒有分出勝負(fù)則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過程中,每局比賽甲獲勝的概率為,乙獲勝的概率為,每局比賽相互獨(dú)立.求:(1)比賽兩局就結(jié)束且甲獲勝的概率;(2)恰好比賽四局結(jié)束的概率;(3)在整個(gè)比賽過程中,甲獲勝的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案