已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),離心率為
2
2
的橢圓經(jīng)過點(diǎn)(
6
,1).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的一個(gè)焦點(diǎn)且互相垂直的直線l1,l2分別與橢圓交于A,B和C,D,是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,求出實(shí)數(shù)λ的值;若不存在,請(qǐng)說明理由.
分析:(1)由橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
c
a
=
2
2
,經(jīng)過點(diǎn)(
6
,1)即
(
6
)
2
a2
+
12
b2
=1可求得a2,b2;
(2)設(shè)出直線AB,CD的方程與橢圓方程聯(lián)立,求得相應(yīng)弦長(zhǎng),利用|AB|+|CD|=λ|AB|•|CD|,可Q求得λ,從而問題得到解決.
解答:解:(1)∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,經(jīng)過點(diǎn)(
6
,1),
∴e=
c
a
=
2
2
?
c2
a2
=
a2-b2
a2
=
1
2
①,
(
6
)
2
a2
+
12
b2
=1②,
由①②解得a2=8,b2=4,
∴該橢圓的標(biāo)準(zhǔn)方程為:
x2
8
+
y2
4
=1;
(2)∵橢圓
x2
8
+
y2
4
=1的左焦點(diǎn)F1(-2,0);
設(shè)過其左焦點(diǎn)F1的直線AB的方程為:y=k1(x+2),k1≠0
由方程組
y=k1(x+2)
x2
8
+
y2
4
=1
 得(2k12+1)x2+8k12x+8k12-8=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=
-8k12
2k12+1
,x1•x2=
8k12-8
2k12+1

由弦長(zhǎng)公式得|AB|=
1+k12
(x1+x2)2-4x1x2
=
4
2
(k12+1)
2k12+1
,
同理設(shè)C(x3,y3),D(x4,y4),|CD|=
1+k22
(x3+x4)2-4x3x4
=
4
2
(k22+1)
2k22+1
,,
由(1)k1•k2=-1得k2=-
1
k1
,代入得|CD|=
4
2
(k12+1)
k12+2
,
∵|AB|+|CD|=λ|AB|•|CD|,
∴λ=
|AB|+|CD|
|AB|•|CD|
=
1
|AB|
+
1
|CD|
=
3
4
2
=
3
2
8
,則存在λ=
3
2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
點(diǎn)評(píng):本題重點(diǎn)考查直線與圓錐曲線的綜合,解題的關(guān)鍵是直線與橢圓方程聯(lián)立,利用弦長(zhǎng)公式,綜合性強(qiáng),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案