(本小題滿分10分)
直線(為參數(shù),為常數(shù)且)被以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,方程為的曲線所截,求截得的弦長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),直線經(jīng)過定點(diǎn)P(3,5),傾斜角為(1)寫出直線的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與曲線C相交于A、B兩點(diǎn),求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(為參數(shù)),直線l經(jīng)過點(diǎn)P(2,2),傾斜角。(1)寫出圓的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于A、B兩點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線直線
將直線的極坐標(biāo)方程和曲線的參數(shù)方程分別化為直角坐標(biāo)方程和普通方程;
設(shè)點(diǎn)P在曲線C上,求點(diǎn)P到直線的距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合.
直線的參數(shù)方程為:(t為參數(shù)),曲線的極坐標(biāo)方程為:.
(Ⅰ)寫出的直角坐標(biāo)方程,并指出是什么曲線;
(Ⅱ)設(shè)直線與曲線相交于、兩點(diǎn),求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為:(t為參數(shù)),若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為r=cos(θ+),求直線l被曲線C所截的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖是某青年歌手大獎(jiǎng)賽是七位評(píng)委為甲、乙兩名選手打分的莖葉圖(其中m是數(shù)字0~9中的一個(gè)),去掉一個(gè)最高分和一個(gè)最低分之后,甲、乙兩名選手的方差分別是a1和a2,則( ).
A.a(chǎn)1>a2 | B.a(chǎn)1<a2 |
C.a(chǎn)1=a2 | D.a(chǎn)1,a2的大小與m的值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知x與y之間的幾組數(shù)據(jù)如下表:
x | 0 | 1 | 2 | 3 |
y | 0 | 2 | 6 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題10分)
曲線為參數(shù),在曲線上求一點(diǎn),使它到直線為參數(shù)的距離最小,求出該點(diǎn)坐標(biāo)和最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com