18.過點(1,2)作圓x2+y2-2x+6y+8=0的切線,求切線的方程.

分析 化圓的方程為標(biāo)準(zhǔn)方程,求出圓心坐標(biāo)和半徑,設(shè)出圓的切線方程,化為一般式,由圓心到切線的距離等于圓的半徑求得斜率,則切線方程可求.

解答 解:化圓x2+y2-2x+6y+8=0為標(biāo)準(zhǔn)方程:(x-1)2+(y+3)2=2,
則圓心坐標(biāo)為(1,-3),半徑為$\sqrt{2}$,
設(shè)過點(1,2)的圓的切線方程為y-2=k(x-1),
即kx-y-k+2=0,
由$\frac{|k×1-1×(-3)-k+2|}{\sqrt{{k}^{2}+1}}=\sqrt{2}$,解得k=$±\frac{\sqrt{46}}{2}$.
當(dāng)k=$\frac{\sqrt{46}}{2}$時,切線方程為$\frac{\sqrt{46}}{2}x-y-\frac{\sqrt{46}}{2}+2=0$,即$\sqrt{46}x-2y-\sqrt{46}+4=0$;
當(dāng)k=-$\frac{\sqrt{46}}{2}$時,切線方程為$-\frac{\sqrt{46}}{2}x-y+\frac{\sqrt{46}}{2}+2=0$,即$\sqrt{46}x+2y-\sqrt{46}-4=0$.

點評 本題考查圓的切線方程的求法,訓(xùn)練了點到直線的距離公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題錯誤的是( 。
A.平行于同一條直線的兩個平面平行或相交
B.平行于同一個平面的兩個平面平行
C.平行于同一條直線的兩條直線平行
D.平行于同一個平面的兩條直線平行或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)y=f(x)是定義在R上且周期為4的奇函數(shù),若-2<x≤-1時,f(x)=2cos$\frac{π}{2}$x+1,求當(dāng)2≤x≤3時,函數(shù)y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l與與直線m:2x+3y-5=0平行,且在兩坐標(biāo)軸上的截距之和為1,求直線1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-2x-3≤0.x∈R},B={m-1≤x≤5-m,m∈R}
(1)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(2)若A⊆∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若f(x)=x3-ax在(-∞,-1)內(nèi)是增函數(shù),在(-1,1)內(nèi)是減函數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=1,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的值域.
(1)y=3-2sin2x;
(2)y=|sinx|+sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)S2個骰子,至少有一個1點的概率為$\frac{11}{36}$.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案