【題目】如圖,在正方體ABCDA1B1C1D1中,O為底面ABCD的中心,P,Q分別為的中點.

求證:(1)平面D1 BQ∥平面PAO.

(2)求異面直線QD1與AO所成角的余弦值;

【答案】(1)見解析; (2) .

【解析】

(1)先證明 BQ||平面PAO,再證明平面D1 BQ∥平面PAO.(2)取中點E,連接EQ,則EQ||AO,所以直線EQ和所成的銳角或直角就是異面直線QD1與AO所成的角,再解三角形求出其余弦值得解.

因為BO=DO,,

所以

因為BQ||PA,,

所以BQ||平面PAO,

因為

所以平面D1 BQ∥平面PAO.

(2)取中點E,連接EQ,則EQ||AO,

所以直線EQ和所成的銳角或直角就是異面直線QD1與AO所成的角.

設正方體的邊長為2,則EQ=,

所以

所以異面直線QD1與AO所成角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩名運動員的若干次訓練成績中隨機抽取6次,分別為

甲:7.7,7.8,8.1,8.6,9.3,9.5

乙:7.6,8.0,8.2,8.5,9.2,9.5

(1)根據(jù)以上的莖葉圖,不用計算說一下甲乙誰的方差大,并說明誰的成績穩(wěn)定;

(2)從甲、乙運動員高于8.1分成績中各隨機抽取1次成績,求甲、乙運動員的成績至少有一個高于9.2分的概率.

(3)經(jīng)過對甲、乙運動員若干次成績進行統(tǒng)計,發(fā)現(xiàn)甲運動員成績均勻分布在[7.5,9.5]之間,乙運動員成績均勻分布在[7.0,10]之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于0.5分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知三個點列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n﹣1,0),滿足向量 與向量 共線,且bn+1﹣bn=6,a1=b1=0,則an=(用n表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 平面,,點上的點,且 .

(1)求證:對任意的 ,都有.

(2)設二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,

,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若對于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿足條件的實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個命題:

①三棱錐的體積為定值;

②經(jīng)過四點的球的直徑為;

③直線∥平面;

④直線所成的角為

其中真命題的個數(shù)是(。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△中,已知,直線經(jīng)過點

(Ⅰ)若直線:與線段交于點,且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P﹣ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,PC為球O的直徑,該三棱錐的體積為 , 則球O的表面積為(  )
A.4π
B.8π
C.12π
D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F是拋物線y2=4x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè),OA⊥OB(其中O為坐標原點),則△AOB與△AOF面積之和的最小值是( 。
A.16
B.8
C.8
D.18

查看答案和解析>>

同步練習冊答案