【題目】已知函數(shù)f(x)=loga()(0<a<1,b>0)為奇函數(shù),當(dāng)x∈(﹣1,a]時,函數(shù)y=f(x)的值域是(﹣∞,1].
(1)確定b的值;
(2)證明函數(shù)y=f(x)在定義域上單調(diào)遞增,并求a的值;
(3)若對于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.
【答案】(1)b=1;(2)見解析;(3)
【解析】
(1)利用f(﹣x)+f(x)=0求出b的值.(2)利用函數(shù)單調(diào)性的定義證明函數(shù)y=f(x)在定義域上單調(diào)遞增,再利用y=f(x)的值域是(﹣∞,1]求出a的值.(3)首先轉(zhuǎn)化為t2﹣2t>k﹣2t2,再轉(zhuǎn)化為k<3t2﹣2t的最小值,求3t2﹣2t的最小值即得解.
(1)∵函數(shù)f(x)=loga()(0<a<1,b>0)為奇函數(shù),
∴f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,
∴l(xiāng)oga+loga=loga()=0,即=1,
∴1﹣x2=b2﹣x2,即b2=1,解得b=1(﹣1舍去),
當(dāng)b=1時,函數(shù)f(x)=loga為奇函數(shù),滿足條件.
(2)證明:設(shè)x1,x2∈(﹣1,1),且x1<x2,由g(x)==﹣1+,
g(x1)﹣g(x2)=,
x1,x2∈(﹣1,1),且x1<x2,可得x2﹣x1>0,(1+x1)(1+x2)>0,
則g(x1)﹣g(x2)>0,即有g(x)在(﹣1,1)遞減,
由f(x)=logag(x),0<a<1可得,
f(x)在(﹣1,1)遞增;
∴函數(shù)f(x)=loga在x∈(﹣1,a)上單調(diào)遞增,
∵當(dāng)x∈(﹣1,a]時,函數(shù)f(x)的值域是(﹣∞,1],
∴f(a)=1,即f(a)=loga=1,∴=a,
即1﹣a=a+a2,∴a2+2a﹣1=0,解得a=﹣1±,∵0<a<1,∴a=﹣1+;
(3)對于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,
即有f(t2﹣2t)>﹣f(2t2﹣k)=f(k﹣2t2),
由f(x)在(﹣1,1)遞增,
可得k<3t2﹣2t的最小值,
由3t2﹣2t=3(t﹣)2﹣,可得t=,取得最小值﹣,可得k<﹣.檢驗成立.
則k的取值范圍是(﹣∞,﹣).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年提出,任意三角形的外心、重心、垂心位于同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點A(2,0),B(0,4),若其歐拉線的方程為x-y+2=0,則頂點C的坐標(biāo)為
A. (-4,0) B. (-3,-1) C. (-5,0) D. (-4,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為、,為橢圓的一個短軸頂點,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若經(jīng)過橢圓左焦點的直線交橢圓于、兩點,為橢圓的右頂點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點(,)和(,),完成下面問題:
(1)求函數(shù)的表達式;
(2)在給出的平面直角坐標(biāo)系中,請用適當(dāng)?shù)姆椒ó嫵鲞@個函數(shù)的圖象,并寫出這個函數(shù)的一條性質(zhì);
(3)已知函數(shù)的圖象如圖所示,結(jié)合你所畫出的圖象,直接寫出的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=﹣x2+2|x|+1的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 |
| m | 2 | 1 | 2 | 1 | ﹣2 | … |
其中,m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì)./p>
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①方程﹣x2+2|x|+1=0有 個實數(shù)根;
②關(guān)于x的方程﹣x2+2|x|+1=a有4個實數(shù)根時,a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了整頓道路交通秩序,某地考慮對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機抽取200人進行調(diào)查,當(dāng)不處罰時,有80人會闖紅燈,處罰時,得到如下數(shù)據(jù):
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
會闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(1)當(dāng)處罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?
(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其它市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查機構(gòu)對某高科技行業(yè)進行調(diào)查統(tǒng)計,得到該行業(yè)從業(yè)者學(xué)歷分布扇形圖和從事該行業(yè)崗位分布條形圖,如圖所示,判斷以下三種說法的正誤:①該高科技行業(yè)從業(yè)人員中學(xué)歷為博士的占一半以上;②該高科技行業(yè)中從事技術(shù)崗位的人數(shù)超過總數(shù)的30%;③該高科技行業(yè)中從事運營崗位的人員主要是本科生.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價,并提高成本;
②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且
(1)求函數(shù)的定義域及其零點;
(2)若關(guān)于的方程在區(qū)間[0,1)內(nèi)有解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com