已知直線的參數(shù)方程為,圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標(biāo)方程;
(II)求直線被圓截得的弦長(zhǎng).
【答案】分析:(I)已知直線的參數(shù)方程為,圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ,分別將圓和直線化為一般方程坐標(biāo).
(II)根據(jù)(I)的一般方程可以求得圓心到直線的距離,再利用勾股定理求直線被圓截得的弦長(zhǎng).
解答:解:(I)直線的普通方程為:2x-y+1=0;
圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)
(II)圓心到直線的距離,
直線被圓截得的弦長(zhǎng)(10分)
點(diǎn)評(píng):此題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的參數(shù)方程為
x=1+t
y=3+2t.
(t為參數(shù))
,圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標(biāo)方程;
(II)求直線被圓截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的參數(shù)方程為
x=-1+2t
y=3-4t
(t為參數(shù)),直線與曲線(y-3)2-x2=1交于A、B兩點(diǎn).
(I)求線段AB的長(zhǎng);
(II)求點(diǎn)P(-1,3)到線段AB中點(diǎn)Q的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省微山一中高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知直線的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程是
以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn),直線與曲
線C交于A,B兩點(diǎn).
(1)寫出直線的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|·|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河北唐山市高三年級(jí)摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(Ⅰ)求的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求弦長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧省分校高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知直線的參數(shù)方程為:為參數(shù)),圓的極坐標(biāo)方程為     ,則直線與圓的位置關(guān)系為      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案