A. | 1 | B. | 4 | C. | 8 | D. | 11 |
分析 作出不等式組對應(yīng)的平面區(qū)域,設(shè)利用數(shù)形結(jié)合即可的得到結(jié)論.
解答 解:x,y滿足約束條件$\left\{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}\right.$的可行域如圖:
z=3x-2y得y=$\frac{3}{2}$x-$\frac{1}{2}z$,平移y=$\frac{3}{2}$x-$\frac{1}{2}z$,
當(dāng)y=$\frac{3}{2}$x-$\frac{1}{2}z$經(jīng)過可行域的A時,z取得最大值,
由$\left\{\begin{array}{l}{x+y-7=0}\\{x-3y+1=0}\end{array}\right.$,解得A(5,2).
此時z的最大值為:3×5-2×2=11.
故選:D.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{13}{6}$ | C. | $\frac{10}{3}$ | D. | $\frac{17}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com