已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ
,動點P的軌跡為C,已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設|DA|=l1,|DB|=l2,則
l1
l2
+
l2
l1
的最大值為
2
2
2
2
分析:設出點P(x,y)代入題中向量等式,整理可得到點P軌跡C的方程為x2=4y.由此設出圓M的方程,求出A、B兩點的坐標以及|DA|=l1,|DB|=l2的表達式,代入式子
l1
l2
+
l2
l1
整理后利用基本不等式求最值,即可得到答案.
解答:解:設P(x,y),則Q(x,-1),
QP
QF
=
FP
FQ
,∴(0,y+1)•(-x,2)=(x,y-1)•(x,-2).
即2(y+1)=x2-2(y-1),即x2=4y,所以動點P的軌跡C的方程x2=4y.
設圓M的圓心坐標為M(a,b),則a2=4b.…①
圓M的半徑為|MD|=
a2+(b-2)2
,圓M的方程為(x-a)2+(y-b)2=a2+(b-2)2
令y=0,則(x-a)2+b2=a2+(b-2)2,整理得,x2-2ax+4b-4=0.…②
由①、②解得,x=a±2.
不妨設A(a-2,0),B(a+2,0),
∴l(xiāng)1=
(a-2)2+4
,l2=
(a+2)2+4
可得
l1
l2
+
l2
l1
=2
(a2+8)2
a4+64
=2
1+
16a2
a4+64
,…③
當a≠0時,由③得,
l1
l2
+
l2
l1
=2
1+
16a2
a2+
64
a2
≤2
1+
16
2×8
=2
2
,當且僅當a=±2
2
時等號成立.
當a=0時,由③得
l1
l2
+
l2
l1
=2
綜上所述,當a=±2
2
時,
l1
l2
+
l2
l1
的最大值為2
2

故答案為:2
2
點評:本小題主要考查圓的方程、拋物線方程與簡單性質(zhì)、基本不等式求最值等知識,考查數(shù)形結合、化歸與轉化、函數(shù)與方程的數(shù)學思想方法,以及推理論證能力和運算求解能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,點P到點F的距離等于點P到直線l的距離.
(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設|DA|=l1,|DB|=l2,求
l1
l2
+
l2
l1
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動點M到點F的距離比它到直線L的距離小1,求動點M的軌跡E的方程;
(2)過點F的直線g交軌跡E于G(x1,y1)、H(x2,y2)兩點,求證:x1x2 為定值;
(3)過軌跡E上一點P作圓C的切線,切點為A、B,要使四邊形PACB的面積S最小,求點P的坐標及S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石家莊二模)在平面直角坐標系中,已知點F(0,1),直線l:y=-1,P為平面內(nèi)動點,過點P作直線l的垂線,垂足為Q,且
QF
•(
QP
+
FP
)=0

(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)過點M(0,m)(m>0)的直線AB與曲線E交于A、B兩個不同點,設∠AFB=θ,若對于所有這樣的直線AB,都有θ∈(
π
2
,π].求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,已知點F(0,1),直線m:y=-1,P為平面上的動點,過點P作m的垂線,垂足為點Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)(文)過軌跡C的準線與y軸的交點M作方向向量為
d
=(a,1)的直線m′與軌跡C交于不同兩點A、B,問是否存在實數(shù)a使得FA⊥FB?若存在,求出a的范圍;若不存在,請說明理由;
(3)(文)在問題(2)中,設線段AB的垂直平分線與y軸的交點為D(0,y0),求y0的取值范圍.

查看答案和解析>>

同步練習冊答案