精英家教網(wǎng)已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F在直線l2交軌跡于兩點P、Q,交直線l1于點R,求
RP
RQ
的最小值.
分析:(1)根據(jù)點C到點F的距離等于它到l1的距離,依據(jù)拋物線的定義可知點C的軌跡是以F為焦點,l1為準線的拋物線,進而求得其軌跡方程.
(2)設(shè)出直線l2的方程與拋物線方程聯(lián)立消去y,設(shè)出P,Q的坐標,根據(jù)韋達定理表示出x1+x2和x1x2的表達式,進而可得點R的坐標,表示出
RP
RQ
,根據(jù)均值不等式求得其最小值.
解答:解:(1)由題設(shè)點C到點F的距離等于它到l1的距離,
∴點C的軌跡是以F為焦點,l1為準線的拋物線
∴所求軌跡的方程為x2=4y
(2)由題意直線l2的方程為y=kx+1,
與拋物線方程聯(lián)立消去y得x2-4kx-4=0.
記P(x1,y1),Q(x2,y2),則x1+x2=4k,x1x2=-4.
因為直線PQ的斜率k≠0,易得點R的坐標為(-
2
k
,-1)

RP
RQ
=(x1+
2
k
,y1+1)•(x2+
2
k
y2+1)

=(x1+
2
k
)(x2+
2
k
)+(kx1+2)(kx2+2)

=(1+k2)x1x2+(
2
k
+2k)(x1+x2)+
4
k2
+4

=-4(1+k2)+4k(
2
k
+2k)+
4
k2
+4

=4(k2+
1
k2
)+8
,
k2+
1
k2
≥2
,當且僅當k2=1時取到等號.
RP
RQ
≥4×2+8=16,即
RP
RQ
的最小值為16
點評:本題主要考查了直線與圓錐曲線的關(guān)系.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學(xué)思想方法,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(0,1)和定直線l:y=-1,過定點F與定直線l相切的動圓的圓心為點C
(1)求動圓的圓心C的軌跡W的方程;
(2)設(shè)點P是W上的一動點,求PF的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)若A,B是所求軌跡上的兩個點,滿足OA⊥OB(0為坐標原點),求證:直線AB經(jīng)過一個定點.
(3)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求
RP
RQ
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點F(0,1)和定直線l:y=-1,過定點F與定直線l相切的動圓的圓心為點C
(1)求動圓的圓心C的軌跡W的方程;
(2)設(shè)點P是W上的一動點,求PF的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 圓錐曲線與方程》2010年單元測試卷(3)(解析版) 題型:解答題

已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F在直線l2交軌跡于兩點P、Q,交直線l1于點R,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案