若函數(shù)f(x)=|nx-2|,(n∈R,n≠0)的圖象的對(duì)稱軸為x=2,則n=________.
1
分析:化簡(jiǎn)函數(shù)為f(x)=|nx-2|=
,它的圖象應(yīng)該是偶函數(shù)y=n|x|向右平移
個(gè)單位而得,故對(duì)稱軸應(yīng)該是x=
,再對(duì)照已知條件得
=2,可得n=1.
解答:根據(jù)題意,得f(x)=|nx-2|=
,
可見函數(shù)的原型是偶函數(shù)y=n|x|,
而函數(shù)y=n|x|向右平移
個(gè)單位可得y=
=|nx-2|,即為原函數(shù)
根據(jù)偶函數(shù)圖象關(guān)于y軸對(duì)稱,可知本題中函數(shù)圖象關(guān)于直線x=
對(duì)稱,
∵函數(shù)f(x)=|nx-2|,(n∈R,n≠0)的圖象的對(duì)稱軸為x=2
∴
?n=1
故答案為1
點(diǎn)評(píng):本題以含有絕對(duì)值的函數(shù)為例,考查了函數(shù)圖象及函數(shù)圖象的變化,屬于中檔題.巧妙利用偶函數(shù)圖象關(guān)于y軸對(duì)稱,找到函數(shù)的原型加以解決,是本題的關(guān)鍵.