2.已知命題p:“x∈R時(shí),都有x2-x+$\frac{1}{4}$<0”;命題q:“存在x∈R,使sinx+cosx=$\sqrt{2}$成立”.則下列判斷正確的是( 。
A.p∨q為假命題B.p∧q為真命題C.¬p∧q為真命題D.¬p∨¬q是假命題

分析 利用配方法求出x2-x+$\frac{1}{4}$的范圍判斷p;利用輔助角公式化積求出sinx+cosx的最值判斷q.再由復(fù)合命題的真假判斷逐一核對四個(gè)選項(xiàng)得答案.

解答 解:∵x2-x+$\frac{1}{4}$=$(x-\frac{1}{2})^{2}≥0$,∴命題P為假命題;
∵sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})$,∴當(dāng)x=$\frac{π}{4}+2kπ,k∈Z$時(shí),sinx+cosx=$\sqrt{2}$成立,故命題q為真命題.
則¬p∧q為真命題.
故選:C.

點(diǎn)評 本題考查復(fù)合命題的真假判斷,考查三角函數(shù)最值的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{(π+e)^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$
(2)$\frac{lg8+lg125-lg2-lg5}{{lg\sqrt{10}lg0.1}}$
(3)已知a,b,c為正實(shí)數(shù),ax=by=cz,$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$,求abc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x,y滿足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}\right.$,若M=4x+y,N=($\frac{1}{2}$)x,則M-N的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x,y滿足約束條件$\left\{\begin{array}{l}x-2≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,那么$\frac{y}{x}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列導(dǎo)數(shù)運(yùn)算正確的是( 。
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(xlnx)′=lnx+1C.(cosx)′=sinxD.(2x)′=x2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.f(x)為偶函數(shù),當(dāng)x>0時(shí),f(x)=2x-1,則當(dāng)x<0時(shí),f(x)=( 。
A.2x-1B.-2x+1C.2x+1D.-2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用“輾轉(zhuǎn)相除法”求得360和504的最大公約數(shù)是(  )
A.36B.72C.24D.2 520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2>0}\\{y-x-1<0}\\{x≤1}\end{array}\right.$,設(shè)u=x+2y,v=2x+y,則$\frac{u}{v}$的最大值為(  )
A.1B.$\frac{5}{4}$C.$\frac{7}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),關(guān)于數(shù)列{an}有下列幾個(gè)命題:
①若an=an+1(n∈N*),則{an]既是等差數(shù)列又是等比數(shù)列;
②若Sn=an2+bn(a、b∈R),則{an}是等差數(shù)列;
③若Sn=1-(-1)n,則{an}是等比數(shù)列;
④若{an}為等差數(shù)列,且存在ak+1>ak>0(k∈N*),則對于任意自然數(shù)n>k,都有an>0.
其中正確命題的序號是②③④.

查看答案和解析>>

同步練習(xí)冊答案