(2012•天津模擬)設(shè)y=f(x)在(-∞,1]上有定義,對于給定的實數(shù)K,定義fk(x)=
f(x),f(x)≤K
K,f(x)>K
,給出函數(shù)f(x)=2x+1-4x,若對于任意x∈(-∞,1],恒有fk(x)=f(x),則( 。
分析:由已知條件可得,k≥f(x)在(-∞,1]恒成立,即k≥f(x)max,結(jié)合指數(shù)函數(shù)與二次函數(shù)的性質(zhì)可求函數(shù)f(x)的最大值,從而可求
解答:解:因為對于任意的x∈(-∞,+∞),恒有fk(x)=f(x),
由已知條件可得,k≥f(x)在(-∞,1]恒成立
∴k≥f(x)max
∵f(x)=2x+1-4x,=2•2x-22x,x∈(-∞,1],令t=2x,t∈(0,2]
則f(t)=2t-t2=-(t-1)2+1,t∈(0,2]
∴在t∈(0,2]上的最大值為f(1)=1
∴k≥1 即k的最小值為1
故選D
點評:本題以新定義為載體,主要考查了閱讀、轉(zhuǎn)化的能力,解決本題的關(guān)鍵是利用已知定義轉(zhuǎn)化為函數(shù)的恒成立問題,結(jié)合二次函數(shù)的性質(zhì)可進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:①f(x)=ax-g(x)(a>0,且a≠1);②g(x)≠0;③f(x)•g′(x)>f′(x)•g(x).若
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)已知集合M={x|log2x≤1},N={x|x2-2x≤0},則“a∈M”是“a∈N”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)已知等差數(shù)列{an},a1=2,a3=6,若將a1,a4,a5都加上同一個數(shù),所得的三個數(shù)依次成等比數(shù)列,則所加的這個數(shù)為
-11
-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)如圖所示,四棱錐P-ABCD的底面是邊長為1的正方形,PA⊥CD,PA=1,PD=
2
,E為PD上一點,PE=2ED.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角D-AC-E的余弦值;
(Ⅲ)在側(cè)棱PC上是否存在一點F,使得BF∥平面AEC?若存在,指出F點的位置,并證明;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案