已知橢圓+=1(其中a>b>0)與直線x+y=1交于P、Q兩點(diǎn),且OP⊥OQ,其中O為坐標(biāo)原點(diǎn).
(1)求+的值;
(2)若橢圓的離心率e滿足≤e≤,求橢圓長軸的取值范圍.
解:(1)設(shè)P(x1,y1)、Q(x2,y2),由OP⊥OQ,得x1x2+y1y2=0, ∵y1=1-x1,y2=1-x2, 代入x1x2+y1y2=0,得2x1x2-(x1+x2)+1=0,① 又將y=1-x代入+=1,得(a2+b2)x2-2a2x+a2(1-b2)=0,x1+x2=,x1x2=,代入①式并化簡,得+=2. (2)由e2==1及已知得≤1≤,≤≤, 又由(1)知b2=, 所以≤≤,≤a2≤,≤a≤,其長軸2a∈[,]. 解析:本題涉及直線與橢圓的交點(diǎn),對于此類問題往往聯(lián)立它們的方程消去其中的一個(gè)未知數(shù),再利用根與系數(shù)間的關(guān)系,得到相應(yīng)的兩個(gè)交點(diǎn)的坐標(biāo)間的關(guān)系,再結(jié)合題目中的其他條件將問題解決. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-1) 2009-2010學(xué)年 第17期 總第173期 人教課標(biāo)版(A選修1-1) 題型:013
已知橢圓+=1上的一點(diǎn)P到其中一個(gè)焦點(diǎn)的距離為3,則點(diǎn)P到另一個(gè)焦點(diǎn)的距離為
2
3
5
7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓x2+=1的左、右兩個(gè)頂點(diǎn)分別為A,B.雙曲線C的方程為x2-=1. 設(shè)點(diǎn)P在第一象限且在雙曲線C上,直線AP與橢圓相交于另一點(diǎn)T.
(Ⅰ)設(shè)P, T兩點(diǎn)的橫坐標(biāo)分別為x1,x2,證明x1· x2=1;
(Ⅱ)設(shè)△TAB與△POB(其中O為坐標(biāo)原點(diǎn))的面積分別為S1與S2 ,且·≤15,求S-S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海交大附中高三數(shù)學(xué)理總復(fù)習(xí)二圓錐曲線的綜合問題練習(xí)卷(解析版) 題型:選擇題
已知橢圓+=1及以下3個(gè)函數(shù):①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函數(shù)圖像能等分該橢圓面積的函數(shù)個(gè)數(shù)有( )
A.1個(gè) B.2個(gè)
C.3個(gè) D.0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TA,TB與此橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設(shè)動(dòng)點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;
(2)設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com