【題目】觀察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由歸納推理可得:若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),記g(x)為f(x)的導函數(shù),則g(-x)等于( )

A.f(x) B.-f(x)

C.g(x) D.-g(x)

【答案】D

【解析】選D.由所給等式知,偶函數(shù)的導數(shù)是奇函數(shù).

f(-x)=f(x),f(x)是偶函數(shù),從而g(x)是奇函數(shù).

g(-x)=-g(x).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設a、b為兩條不同的直線,α、β為兩個不同的平面.下列命題中,正確的是(
A.若a、b與α所成的角相等,則a∥b
B.若α⊥β,m∥α,則m⊥β
C.若a⊥α,a∥β,則α⊥β
D.若a∥α,b∥β,則a∥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:“若ac≥0,則二次方程ax2+bx+c=0沒有實根”,它的否命題為Q. (Ⅰ)寫出命題Q;
(Ⅱ)判斷命題Q的真假,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論成立的是(
A.若ac>bc,則a>b
B.若a>b,則a2>b2
C.若a>b,c<d,則a+c>b+d
D.若a>b,c>d,則a﹣d>b﹣c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過圓x2+(y﹣3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是(
A.x+y﹣2=0
B.x﹣y+2=0
C.x+y﹣3=0
D.x﹣y+3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】請仔細觀察1,1,2,3,5,( ),13,運用合情推理,可知寫在括號里的數(shù)最可能是( )

A.8 B.9

C.10 D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱柱中

A.只有兩個面平行

B.所有的棱都平行

C.所有的面都是平行四邊形

D.兩底面平行,且各側棱也互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:“x∈[0,1],a≥2x”,命題p:“x∈R,x2+4x+a=0”,若命題“p∧q”是真命題,則實數(shù)a的取值范圍是(
A.[1,4]
B.[2,4]
C.[2,+∞)
D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題“x∈R,n∈N* , 使得n≥x2”的否定形式是( 。
A.x∈R,n∈N* , 使得n<x2
B.x∈R,n∈N* , 使得n<x2
C.x∈R,n∈N* , 使得n<x2
D.x∈R,n∈N* , 使得n<x2

查看答案和解析>>

同步練習冊答案