8.坐標系與參數(shù)方程已知在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}$(θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸半軸為極軸)中直線l的方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲線C在極坐標系中的方程;
(2)求直線l被曲線C截得的弦長.

分析 (1)把曲線C的參數(shù)方程利用同角三角函數(shù)的基本關系消去參數(shù)θ,化為普通方程,再根據(jù)x=ρcosθ,y=ρsinθ,化為極坐標方程.
(2)把直線和圓的直角坐標方程聯(lián)立方程組,求得交點的坐標,再利用兩點間的距離公式求得弦長.

解答 解:(1)曲線C的普通方程為(x-2)2+y2=4,
即x2+y2-4x=0,將$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$代入方程x2+y2-4x=0化簡得ρ=4cosθ.
所以,曲線C的極坐標方程是ρ=4cosθ.
(2)∵直線l的直角坐標方程為x+y-4=0,
由$\left\{\begin{array}{l}{x^2}+{y^2}-4x=0\\ x+y-4=0\end{array}\right.$得直線l與曲線C的交點坐標為A(2,2),B(4,0),
所以弦長|AB|=$\sqrt{(4-2)^{2}+(0-2)^{2}}$=2$\sqrt{2}$.

點評 本題主要考查把參數(shù)方程、極坐標方程化為直角坐標方程的方法,求直線和圓的交點坐標,兩點間的距離公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知圓上的四點A、B、C、D,CD∥AB,過點D的圓的切線DE與BA的延長線交于E點.
(1)求證:∠CDA=∠EDB;
(2)若BC=CD=5,DE=7,求線段DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在數(shù)列{an}中,an+1=an+a (n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$滿足2$\overrightarrow{OC}$=a2$\overrightarrow{OA}$+a2015$\overrightarrow{OB}$,三點A、B、C共線且該直線不過O點,則S2016等于( 。
A.2016B.2017C.1007D.1008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若α,β∈($\frac{π}{4}$,$\frac{π}{2}$),則下列不等式中不成立的序號有①②④.
①sin2α<cos2β;②sinα+cosα<1;③tanα>sinα;④sin(α+β)>cos(α-β)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設集合A={x|log2(x2-3x)<2},B={x|$\frac{x+3}{2-x}$≥0},則A∩B=( 。
A.(-1,0)B.(-1,2)C.(-1,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.p:若(x-1)(y+2)=0,則x=1或y=-2則p的逆否命題是真命題,¬p是假命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)函數(shù)y=f(x)是一次函數(shù),且f[f(x)]=9x+8,求f(x);
(2)已知3f(x)+2f(-x)=x+3,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知P(-1,2),過P點且與原點距離最大的直線的方程是(  )
A.x+2y-5=0B.2x-y+5=0C.x-2y+5=0D.2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x||x-1|<2},B={x|log2x<3},則A∩B=( 。
A.(-1,3)B.(0,3)C.(0,8)D.(-1,8)

查看答案和解析>>

同步練習冊答案