已知函數(shù)y=x2+alnx+
2
x
在(1,4)上單調(diào)遞減,求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為y′=2x+
a
x
-
2
x2
,
若函數(shù)y=x2+alnx+
2
x
在(1,4)上單調(diào)遞減,
則函數(shù)y′=2x+
a
x
-
2
x2
≤0在(1,4)恒成立,
即a≤
2
x
-2x
2在(1,4)恒成立,
∵函數(shù)f(x)=
2
x
-2x
2的導(dǎo)數(shù)f′(x)=-
2
x2
-4x<0,
∴函數(shù)在(1,4)上單調(diào)遞減,
∴f(4)<f(x)<f(1),
-
15
2
<f(x)<0,
則a≤-
15
2
點(diǎn)評:本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,將函數(shù)的單調(diào)性轉(zhuǎn)化為函數(shù)最值恒成立是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個數(shù)是(  )
(1)有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱
(2)棱柱的底面一定是平行四邊形
(3)棱錐被平面分成的兩部分不可能都是棱錐
(4)用平行于圓錐底面的平面去截這個圓錐,所得幾何體叫做圓臺.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-x≤0的解集為M,且集合N={x|
x+1
x-1
<0},則M∩N為( 。
A、[0,1)
B、(0,1)
C、[0,1]
D、(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z∈Z,且滿足x+y+z=3,x3+y3+z3=3,求x2+y2+z2所有可能的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年中國男子籃球職業(yè)聯(lián)賽將由廣東隊和新疆隊爭奪參加決賽的一個名額,比賽采用5場3勝制,根據(jù)以往戰(zhàn)績統(tǒng)計,每場比賽廣東隊獲勝的概率為
2
3
,新疆隊獲勝的概率為
1
3

(Ⅰ)求廣東隊在0:1落后的情況下,最后獲勝的概率(結(jié)果用分?jǐn)?shù)表示).
(Ⅱ)前3場比賽,每場比賽主辦方將有30萬元的收益,以后的每場比賽將比前一場多收益10萬元,求本次比賽主辦方收益的數(shù)學(xué)期望(結(jié)果精確到小數(shù)點(diǎn)后一位數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Σ的兩個焦點(diǎn)分別是F1(-2,0)、F2(2,0),并且經(jīng)過點(diǎn)P(
5
2
,-
3
2
).
(1)求橢圓Σ的標(biāo)準(zhǔn)方程;
(2)求∠F1PF2的平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,等腰梯形ABCD內(nèi)接于⊙O,AB∥CD.過點(diǎn)A作⊙O的切線交CD的延長線于點(diǎn)E.求證:∠DAE=∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=BC=a,AA1=2a.
(1)求證:平面AB1D1∥平面C1BD;
(2)求兩平面AB1D1與C1BD之間的距離.
(注:兩平行平面之間的距離是其中一個平面上任意一點(diǎn)到另一個平面的距離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1•an+an+1-an=0
(Ⅰ)證明:數(shù)列{
1
an
}為等差數(shù)列,并求an;
(Ⅱ)設(shè)bn=an•an+2,求數(shù)列{bn}的前n項和Sn
(Ⅲ)求證:
1
3
Sn
3
4

查看答案和解析>>

同步練習(xí)冊答案