如圖,已知點A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點C在直線l:x-2y+2=0上,
(Ⅰ)求AB邊上的高CE所在直線的方程;
(Ⅱ)求△ABC的面積。

解:(Ⅰ)由題意可知,E為AB的中點,
∴E(3,2),

∴CE:y-2=x-3,即x-y-1=0;
(Ⅱ)由,得C(4,3),
∴|AC|=|BC|=2,AC⊥BC,
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
(Ⅰ)當(dāng)∠BOD=
π6
,求四邊形ODAE的面積;
(Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省泉州市高三質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
(Ⅰ)當(dāng),求四邊形ODAE的面積;
(Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案