【題目】經(jīng)濟訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲費,為每次訂貨費. 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費為120元/年,每次訂貨費為2500元.
(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費;
(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費最少?最少費用為多少?
【答案】(1),;(2),
【解析】
(1)根據(jù)題中數(shù)據(jù)求出,,,得到,再將代入即可得出結(jié)果;
(2)根據(jù)基本不等式求出最小值,注意等號成立的條件,即可得出結(jié)果.
(1)因為年存儲成本費(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲費,為每次訂貨費.
由題意可得:,,,
所以存儲成本費,
若該化工廠每次訂購300噸甲醇,
所以年存儲成本費為;
(2)因為存儲成本費,,
所以,
當(dāng)且僅當(dāng),即時,取等號;
所以每次需訂購噸甲醇,可使該化工廠年存儲成本費最少,最少費用為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校共有教職工900人,分成三個批次進行繼續(xù)教育培訓(xùn),在三個批次中男、女教職工人數(shù)如下表所示.已知在全體教職工中隨機抽取一名,抽到第二批次中女職工的概率是0.16.
第一批次 | 第二批次 | 第三批次 | |
女教職工 | 196 | ||
男教職工 | 204 | 156 |
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查,問應(yīng)在第三批次中抽取教職工多少名?
(3)已知,,求第三批次中女教職工比男教職工多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若為的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,其中為常數(shù).
(1)證明: ;
(2)是否存在,使得為等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標(biāo)準(zhǔn)分別是500元/分鐘和200元分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元
A.72B.80C.84D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)討論函數(shù)的單調(diào)性;
(2)若,討論函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實推進陽光體育運動,積極引導(dǎo)學(xué)生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為“鍛煉達人”.
(1)將頻率視為概率,估計我校7000名學(xué)生中“鍛煉達人”有多少?
(2)從這100名學(xué)生的“鍛煉達人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點的直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于、兩點,求的值,并求定點到,兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,,點,分別為和中點.
(1)求證:直線平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com