先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

  (1)求直線ax+by+5=0與圓x2+y2=1相切的概率;   

  (2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

 

 

 

 

 

【答案】

 解析:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.---------------------------- (5分)

∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是   

即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}

∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.

∴直線ax+by+c=0與圓x2+y2=1相切的概率是          --------------  (10分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(Ⅰ)設(shè)函數(shù)f(x)=|x-a|,函數(shù)g(x)=x-b,令F(x)=f(x)-g(x),求函數(shù)F(x)有且只有一個零點的概率;
(Ⅱ)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆福建省漳州市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a, b.

(1)求直線ax+by+5=0與圓 相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010屆高三數(shù)學(xué)每周精析精練:概率 題型:解答題

 先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

  (1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

  (2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案