【題目】某企業(yè)2017年招聘員工,其中五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到如下:

崗位

男性應(yīng)聘人數(shù)

男性錄用人數(shù)

男性錄用比例

女性應(yīng)聘人數(shù)

女性錄用人數(shù)

女性錄用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

總計(jì)

533

264

467

169

(Ⅰ)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;

從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;

表中各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫(xiě)出這四種崗位.(只需寫(xiě)出結(jié)論

【答案】;(;(.

【解析】試題分析:(1)先求表中所有應(yīng)聘人員總數(shù),再確定被該企業(yè)錄用的人數(shù),最后根據(jù)古典概型概率公式求概率,(2)先確定隨機(jī)變量取法,再利用組合數(shù)求對(duì)應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望(3)根據(jù)表中數(shù)據(jù)挑選男性、女性的錄用比例接近的四種崗位.

試題解析:Ⅰ)因?yàn)楸碇兴袘?yīng)聘人員總數(shù)為,被該企業(yè)錄用的人數(shù)為,所以從表中所有應(yīng)聘人員中隨機(jī)選擇1人,此人被錄用的概率約為

X可能的取值為因?yàn)閼?yīng)聘E崗位的6人中,被錄用的有4人,未被錄用的有2人,所以 ;

所以X 的分布列為:

X

0

1

2

P

Ⅲ)這四種崗位是:B、C、D、E

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=logax+1),gx)=2loga2x+t)(tR),其中x[0,15],a0,且a1

1)若1是關(guān)于x的方程fx)﹣gx)=0的一個(gè)解,求t的值;

2)當(dāng)0a1時(shí),不等式fx)≥gx)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知坐標(biāo)平面內(nèi)三點(diǎn)P(3,-1),M(6,2),N,直線過(guò)點(diǎn)P.若直線與線段MN相交,則直線的傾斜角的取值范圍( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線.

(1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;

(2)若直線軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時(shí)直線的方程;

(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A,BC的對(duì)邊分別為a,b,c.已知2cos(BC)14cosBcosC

)求A;

)若a2△ABC的面積為2,求bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

(1)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);

(2)函數(shù)在區(qū)間內(nèi)是增函數(shù);

(3)函數(shù)是偶函數(shù);

(4)存在實(shí)數(shù),使;

(5)如果函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱(chēng),那么的最小值為.

其中正確的命題的序號(hào)是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】流行性感冒多由病毒引起,據(jù)調(diào)查,空氣月平均相對(duì)濕度過(guò)大或過(guò)小時(shí),都有利于一些病毒繁殖和傳播,科學(xué)測(cè)定,當(dāng)空氣月平均相對(duì)濕度大于65010或小于時(shí),有利于病毒繁殖和傳播.下表記錄了某年甲、乙兩個(gè)城市12個(gè)月的空氣月平均相對(duì)濕度.

第一季度

第二季度

第三季度

第四季度

1

2

3

4

5

6

7

8

9

10

11

12

甲地

乙地

(I)從上表12個(gè)月中,隨機(jī)取出1個(gè)月,求該月甲地空氣月平均相對(duì)濕度有利于病毒繁殖和傳播的概率;

(Ⅱ)從上表第一季度和第二季度的6個(gè)月中隨機(jī)取出2個(gè)月,記這2個(gè)月中甲、乙兩地空氣月平均相對(duì)濕度都有利于病毒繁殖和傳播的月份的個(gè)數(shù)為,求的分布列;

(Ⅲ)若,設(shè)乙地上表12個(gè)月的空氣月平均相對(duì)濕度的中位數(shù)為,求的最大值和最小值.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱(chēng)為“低碳族”,否則稱(chēng)為“非低碳族”.得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳組的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補(bǔ)全頻率分布直方圖,并求,,的值;

2)求年齡段人數(shù)的中位數(shù)和眾數(shù);

3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶(hù)外低碳體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),求選取的3名領(lǐng)隊(duì)中年齡都在歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個(gè)命題:

①三棱錐的體積為定值;

②經(jīng)過(guò)四點(diǎn)的球的直徑為;

③直線∥平面;

④直線所成的角為;

其中真命題的個(gè)數(shù)是(。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案