A. | 6 | B. | 8 | C. | 12 | D. | 16 |
分析 設(shè)AD=x,BD=y,CE=z,則$\left\{\begin{array}{l}{\stackrel{x+y=c}{y+z=a}}\\{z+x=b}\end{array}\right.$,解得x=$\frac{b+c-a}{2}$=3.由$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,可得$\overrightarrow{AI}•\overrightarrow{BC}$=|$\overrightarrow{AD}$|(b-c)即可得解.
解答 解:設(shè)AD=x,BD=y,CE=z,
則$\left\{\begin{array}{l}{\stackrel{x+y=c}{y+z=a}}\\{z+x=b}\end{array}\right.$,解得x=$\frac{b+c-a}{2}$=3,
如圖所示,
∵$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,
∴$\overrightarrow{AI}•\overrightarrow{BC}$=$\overrightarrow{AI}•$($\overrightarrow{AC}-\overrightarrow{AB}$)=$\overrightarrow{AI}•\overrightarrow{AC}$-$\overrightarrow{AI}•\overrightarrow{AB}$
=|$\overrightarrow{AE}$|b-|$\overrightarrow{AD}$|c
=|$\overrightarrow{AD}$|(b-c)
=3×4
=12.
故選:C.
點評 本題考查了向量的三角形法則、數(shù)量積運算性質(zhì)、三角形內(nèi)切圓的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,2) | B. | (1,2) | C. | (1,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com