已知橢圓C:
x24
+y2=1
,直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由;
(2)求△AOB面積S的最小值.
分析:(1)設(shè)A(x1,y1),B(x2,y2),分類討論:①當(dāng)直線AB斜率不存在時(shí),由橢圓的對(duì)稱性,可求原點(diǎn)O到直線的距離;②當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,利用韋達(dá)定理及點(diǎn)到直線的距離公式,即可得到結(jié)論;
(2)利用三角函數(shù)表示出|OA|,|OB|,進(jìn)而可求|OA||OB|的最小值,從而可求△AOB面積S的最小值.
解答:解:(1)設(shè)A(x1,y1),B(x2,y2),
①當(dāng)直線AB斜率不存在時(shí),由橢圓的對(duì)稱性可知x1=x2,y1=-y2,
∵以AB為直徑的圓D經(jīng)過(guò)坐標(biāo)原點(diǎn),∴
OA
OB
=0

∴x1x2+y1y2=0,∴x12-y12=0
∵x12+4y12=4,∴|x1|=|y1|=
2
5
5

∴原點(diǎn)O到直線的距離為d=|x1|=
2
5
5

②當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,消元可得(1+4k2)x2+8kmx+4m2-4=0
∴x1+x2=-
8km
1+4k2
,x1x2=
4m2-4
1+4k2

∵以AB為直徑的圓D經(jīng)過(guò)坐標(biāo)原點(diǎn),∴
OA
OB
=0

∴x1x2+y1y2=0,∴(1+k2
4m2-4
1+4k2
-km×
8km
1+4k2
+m2=0
∴5m2=4(k2+1)
∴原點(diǎn)O到直線的距離為d=
|m|
k2+1
=
2
5
5

綜上,點(diǎn)O到直線AB的距離為定值;
(2)由(1)可知,在直角△OAB中,點(diǎn)O到直線AB的距離|OH|=
2
5
5
,設(shè)∠OAH=θ,則∠BOH=θ
∴|OA|=
|OH|
sinθ
,|OB|=
|OH|
cosθ

∴|OA||OB|=
8
5
sin2θ

∴2θ=
π
2
,即θ=
π
4
時(shí),|OA||OB|取得最小值為
8
5

∴△AOB面積S的最小值為
4
5
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查圓與橢圓的綜合,聯(lián)立方程,利用韋達(dá)定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過(guò)橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長(zhǎng)度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)一模)已知橢圓C:
x2
4
+
y2
3
=1
和點(diǎn)P(4,0),垂直于x軸的直線與橢圓C交于A,B兩點(diǎn),連結(jié)PB交橢圓C于另一點(diǎn)E.
(Ⅰ)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)證明直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知橢圓C:
x2
4
+y2=1
,直線l與橢圓C相交于A、B兩點(diǎn),
OA
OB
=0
(其中O為坐標(biāo)原點(diǎn)).
(1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由;
(2)求|OA|•|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,已知定點(diǎn)F1(-2,0)、F2(2,0),動(dòng)點(diǎn)N滿足|
ON
|=1(O為坐標(biāo)原點(diǎn)),
F1M
=2
NM
MP
MF2
(λ∈R),
F1M
PN
=0,求點(diǎn)P的軌跡方程.
精英家教網(wǎng)
(2)如圖2,已知橢圓C:
x2
4
+y2=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓上,且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N,
(。┰O(shè)直線AP、BP的斜率分別為k1、k2,求證:k1•k2為定值;
(ⅱ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案