分析 設(shè)其側(cè)面與底面所成的二面角的大小為α,以正四棱錐為例,設(shè)正四棱錐的底面正方形的邊長(zhǎng)為2a,高為h,建立關(guān)系,利用基本不等式求解表面積最小時(shí)的體積與邊長(zhǎng)的關(guān)系,從而確定其側(cè)面與底面所成的二面角的大小.
解答 解:設(shè)其側(cè)面與底面所成的二面角的大小為α,以正四棱錐為例,體積V為定值,設(shè)正四棱錐的底面正方形的邊長(zhǎng)為2a,高為h,
則側(cè)面的高為h′=$\sqrt{{h}^{2}+{a}^{2}}$,
棱錐的體積V=$\frac{1}{3}$Sh=$\frac{1}{3}$4a2h,則${a}^{2}=\frac{3v}{4h}$
表面積S=4×$\frac{1}{2}$×h′×2a=4a×h′=4a$\sqrt{{h}^{2}+{a}^{2}}$=4×$\sqrt{\frac{3V}{4h}×({h}^{2}-\frac{3V}{4h})}$=4×$\sqrt{\frac{3Vh}{4}+\frac{9{V}^{2}}{16{h}^{2}}}$
∵$\frac{3Vh}{8}+\frac{3Vh}{8}+\frac{9{V}^{2}}{16{h}^{2}}$≥3×$\root{3}{\frac{3V×3V×9{V}^{2}}{64×16}}$=$\frac{9V}{4}\root{3}{\frac{3V}{16}}$,
(當(dāng)且僅當(dāng)$\frac{3Vh}{8}=\frac{9{V}^{2}}{16{h}^{2}}$時(shí),即h=$\root{3}{\frac{3V}{2}}$取等號(hào)).
而此時(shí)側(cè)面與底面所成的二面角α,有$tanα=\frac{h}{a}$,
可得:$tanα=\frac{4(\frac{3}{2}V)^{\frac{2}{3}}}{3V}$
故得:側(cè)面與底面所成的二面角α=arctan($\frac{4(\frac{3}{2}V)^{\frac{2}{3}}}{3V}$).
點(diǎn)評(píng) 本題考察了正n棱錐的體積V與底面積,表面積之間的關(guān)系,基本不等式求解表面積最小時(shí)的體積與邊長(zhǎng)的關(guān)系,從而確定其側(cè)面與底面所成的二面角的大小是解題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com