【題目】已知函數(shù),

(1)討論單調(diào)性;

(2),函數(shù)的最大值為,求不超過的最大整數(shù) .

【答案】(1)見解析;(2)-1.

【解析】分析:(1)對a分類討論求單調(diào)性.(2)先利用導數(shù)求出m的表達式,,再求不超過的最大整數(shù) .

詳解:(1) ,

①當時,

時,單調(diào)遞減;

時,單調(diào)遞增;

②當時,

時,單調(diào)遞增;

時,單調(diào)遞減;

時,單調(diào)遞增;

③當時,時, 單調(diào)遞增;

④當時,

時,單調(diào)遞增;

時,單調(diào)遞減;

時,單調(diào)遞增;

綜上,當時,上單調(diào)遞減,上單調(diào)遞增;

時,上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增:

時,上單調(diào)遞增;

時,上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;

(2),

,

時,,單調(diào)遞增;

時,,單調(diào)遞減;

,, ,

所以,存在唯一的,使,即

所以,當時,單調(diào)遞增;

時,,單調(diào)遞減;

,所以,.

所以,不超過的最大整數(shù)為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一則“清華大學要求從 2017級學生開始,游泳達到一定標準才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.其實,已有不少高校將游泳列為必修內(nèi)容.

某中學擬在高一-下學期開設游泳選修課,為了了解高--學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

40

女生

30

合計

已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為.

(1).請將上述列聯(lián)表補充完整,并判斷是否可以在犯錯誤的概率不超過0.001的前提下認為喜歡游泳與性別有關.

(2)已知在被調(diào)查的學生中有6名來自高一(1) 班,其中4名喜歡游泳,現(xiàn)從這6名學生中隨機抽取2人,求恰有1人喜歡游泳的概率.

附:

0.10

0.050

0.025

0.010

0.005

0.001

2.706

/td>

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

(1)根據(jù)散點圖判斷,在推廣期內(nèi), (均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關于的回歸方程,并預測活動推出第天使用掃碼支付的 人次;

(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下

車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預計該車隊每輛車每個月有萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)=.

(1)求的最大值:

(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為函數(shù)的導函數(shù).

(1)分別判斷的奇偶性;

(2)若,求的零點個數(shù);

(3)若對任意的,恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且sin(α+β)=3sin(α-β).

(1)若tanα=2,求tanβ的值;

(2)求tan(α-β)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于AB兩點,已知AB的橫坐標分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分數(shù)據(jù)如下表:

(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;

(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預測該地區(qū) 2018年的糧食產(chǎn)量.

附:回歸直線的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|x22x80},B{x|x2axa2120},若BAA,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案