3 |
6 |
6 |
VA2+VA′2 |
(2
|
6 |
6 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)確定點(diǎn)D的位置,并證明你的結(jié)論;
(2)求二面角A1 –AB-1D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示的一組圖形為某一四棱錐S—ABCD的側(cè)面與底面,
(1)指出各側(cè)棱長(zhǎng);
(2)在(1)的條件下,過(guò)A且垂直于SC的平面分別交于SB、SC、SD于E、F、G.
求(1)(2)的條件下,求二面角A—SC—B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆安徽合肥一中高二上學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市模擬題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC的中點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:AD⊥平面PBC.
(2)求三棱錐D-ABC的體積.
(3)在∠ACB的平分線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com