13.若x∈[1,+∞)時(shí),函數(shù)f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,求a的取值范圍.

分析 根據(jù)題意,不等式可轉(zhuǎn)換為x2+2x+a>0恒成立,即x2+2x>-a恒成立,
只需求出左式的最小值即可.

解答 解:f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,
∴x2+2x+a>0恒成立,
∴x2+2x>-a恒成立,
令g(x)=x2+2x=(x+1)2-1在x∈[1,+∞)時(shí)遞增,
∴g(x)≥g(1)=3,
∴a>-3.

點(diǎn)評 考查了二次函數(shù)的性質(zhì)和恒成立問題的轉(zhuǎn)換,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若$y={log_{3{a^2}-1}}x$在(0,+∞)內(nèi)為增函數(shù),且y=a-x也為增函數(shù),則a的取值范圍是(  )
A.$(\frac{{\sqrt{3}}}{3},\;\;1)$B.$(0,\;\;\frac{1}{3})$C.$(\frac{{\sqrt{3}}}{3},\;\;\frac{{\sqrt{6}}}{3})$D.$(\frac{{\sqrt{6}}}{3},1\;\;)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.過點(diǎn)M(-2,1),且垂直于直線2x-y+6=0的直線方程為x+2y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$lo{g}_{{2}_{\;}}$(-x2+2x+3)的單調(diào)遞增區(qū)間是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)y=3x,x∈[-1,2],則其值域是[-3,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A={x|x2-2x≤0},B={x|x2+ax-1≤0},若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.計(jì)算3lg5•2lg3=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=1-$\frac{2}{1{0}^{x}+1}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求f(x)的值域;
(3)用定義證明f(x)在(-∞,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.代數(shù)式sin120°cos240°的值為( 。
A.$-\frac{3}{4}$B.$-\frac{{\sqrt{3}}}{4}$C.$-\frac{3}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案