半徑為4的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是_________.

 

【答案】

32π

【解析】解:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=4cosα,圓柱的高為8sinα,圓柱的側(cè)面積為:32πsin2α,當(dāng)且僅當(dāng)α=π 4 時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:32π,球的表面積為:64π,球的表面積與該圓柱的側(cè)面積之差是:32π.

故答案為:32π

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半徑為4的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半徑為4的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時,球的表面積與圓柱的側(cè)面積之差是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半徑為4的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是_________.

答案:32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練14練習(xí)卷(解析版) 題型:填空題

如圖所示,半徑為4的球O中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是    .

 

 

查看答案和解析>>

同步練習(xí)冊答案