從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為,延長交雙曲線右支于點(diǎn),若為線段的中點(diǎn),為坐標(biāo)原點(diǎn),則與 的大小關(guān)系為 ( )
A. | B. |
C. | D.不確定 |
B
解析試題分析:解:將點(diǎn)P置于第一象限.
設(shè)F1是雙曲線的右焦點(diǎn),連接PF1
∵M(jìn)、O分別為FP、FF1的中點(diǎn),∴|MO|=|PF1|.
又由雙曲線定義得, |PF|-|PF1|=2a
|FT|=,故|MO|-|MT|=|PF1|-|MF|+|FT|
=(|PF1|-|PF|)+|FT|=b-a.
故選B.
考點(diǎn):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力
點(diǎn)評:該試題具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)定點(diǎn)M(3,)與拋物線=2x上的點(diǎn)P的距離為,P到拋物線準(zhǔn)線l的距為,則+取最小值時(shí),P點(diǎn)的坐標(biāo)為
A.(0,0) | B.(1,) | C.(2,2) | D.(,-) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)是橢圓的離心率,且,則實(shí)數(shù)的取值范圍是( )
A. (0,3) | B. (3,) |
C. (0,3)( ,+) | D. (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知F1和F2分別是雙曲線的左、右焦點(diǎn),P是雙曲線左支的一點(diǎn), ,,則該雙曲線的離心率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在拋物線y2=2px上,橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5,則p的值為( )
A. | B.1 | C.4 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知橢圓的上、下頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,若四邊形是正方形,則此橢圓的離心率等于
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
拋物線y2=2Px,過點(diǎn)A(2,4),F(xiàn)為焦點(diǎn),定點(diǎn)B的坐標(biāo)為(8,-8),則|AF|∶|BF|值為
A.1∶4 | B.1∶2 | C.2∶5 | D.3∶8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
中心在坐標(biāo)原點(diǎn)的橢圓,焦點(diǎn)在x軸上,焦距為4,離心率為,則該橢圓的方程為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在拋物線上取橫坐標(biāo)為,的兩點(diǎn),經(jīng)過兩點(diǎn)引一條割線,有平行于該割線的一條直線同時(shí)與該拋物線和圓相切,則拋物線的頂點(diǎn)坐標(biāo)是
A.(-2,-9) | B.(0,-5) | C.(2,-9) | D.(1,-6) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com