精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=sinx-
1
3
x,x∈[0,π],cosx0=
1
3
(x0∈[0,π])
,那么下面結論正確的是(  )
A、f(x)在[0,x0]上是減函數
B、f(x)在[x0,π]上是減函數
C、?x∈[0,π],f(x)>f(x0
D、?x∈[0,π],f(x)≥f(x0
分析:由函數的解析式f(x)=sinx-
1
3
x可求其導數f′(x)=cosx-
1
3
,又余弦函數在[0,π]上單調遞減,判斷導數在[x0,π]上的正負,再根據導數跟單調性的關系判斷函數的單調性.
解答:解:∵f(x)=sinx-
1
3
x
∴f′(x)=cosx-
1
3
    
∵cosx0=
1
3
,x0∈[0,π]
又∵余弦函數y=cosx在區(qū)間[0,π]上單調遞減     
∴當x>x0時,cosx<cosx0 即cosx<
1
3

∴當x>x0時,f′(x)=cosx-
1
3
<0   
∴f(x)=sinx-
1
3
x在[x0,π]上是減函數.
故選B.
點評:利用導數判斷函數的單調性,一定要注意其方法及步驟.(1)確定函數f(x)的定義域;(2)求導數f′(x);(3)在f(x)的定義域內解不等式f′(x)>0和f′(x)<0;(4)寫出f(x)的單調區(qū)間.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(附加題)
(Ⅰ)設非空集合S={x|m≤x≤l}滿足:當x∈S時有x2∈S,給出下列四個結論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結論為
②③④
②③④

(Ⅱ)已知函數f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數學 來源: 題型:

將正奇數列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數表:
記aij是這個數表的第i行第j列的數.例如a43=17
(Ⅰ)  求該數表前5行所有數之和S;
(Ⅱ)2009這個數位于第幾行第幾列?
(Ⅲ)已知函數f(x)=
3x
3n
(其中x>0),設該數表的第n行的所有數之和為bn,
數列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•開封二模)已知函數f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數f(x)的單調遞增區(qū)間;
(II)記△ABC的內角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•黑龍江一模)已知函數f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數f(x)的單調遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃山模擬)已知函數f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實數集合M,若存在實數s,使得M中任何數都不超過s,則稱s是M的一個上界.已知e是無窮數列an=(1+
1
n
)n+a
所有項組成的集合的上界(其中e是自然對數的底數),求實數a的最大值.

查看答案和解析>>

同步練習冊答案