【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥平面ABCD,且∠ABC= .
(1)求證:BC∥平面AB1C1;
(2)求證:平面A1ABB1⊥平面AB1C1 .
【答案】
(1)證明:∵BC∥B1C1,且B1C1平面AB1C1,BC平面AB1C1,
∴BC∥平面AB1C1
(2)證明:∵平面A1ABB1⊥平面ABCD,平面ABCD∥平面A1B1C1D1,
∴平面A1ABB1⊥平面A1B1C1D1,
∵平面A1ABB1∩平面A1B1C1D1=A1B1,A1B1⊥C1B1,
∴C1B1平面AB1C1,
∴平面A1ABB1⊥平面AB1C1
【解析】(1)根據(jù)BC∥B1C1 , 且B1C1平面AB1C1 , BC平面AB1C1 , 依據(jù)線面平行的判定定理推斷出BC∥平面AB1C1 . (2)平面A1ABB1⊥平面ABCD,平面ABCD∥平面A1B1C1D1 , 推斷出平面A1ABB1⊥平面A1B1C1D1 , 又平面A1ABB1∩平面A1B1C1D1=A1B1 , A1B1⊥C1B1 , C1B1平面AB1C1 , 根據(jù)面面垂直的性質(zhì)推斷出平面A1ABB1⊥平面AB1C1 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2010年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示。
(1)求第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題13分)已知數(shù)列滿足:,,且.記
集合.
(Ⅰ)若,寫出集合的所有元素;
(Ⅱ)若集合存在一個元素是3的倍數(shù),證明:的所有元素都是3的倍數(shù);
(Ⅲ)求集合的元素個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}和{bn}的項數(shù)均為m,則將數(shù)列{an}和{bn}的距離定義為 |ai﹣bi|.
(1)給出數(shù)列1,3,5,6和數(shù)列2,3,10,7的距離;
(2)設(shè)A為滿足遞推關(guān)系an+1= 的所有數(shù)列{an}的集合,{bn}和{cn}為A中的兩個元素,且項數(shù)均為m,若b1=2,c1=3,{bn}和{cn}的距離小于2016,求m的最大值;
(3)記S是所有7項數(shù)列{an|1≤n≤7,an=0或1}的集合,TS,且T中任何兩個元素的距離大于或等于3,證明:T中的元素個數(shù)小于或等于16.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.
記表示臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時購買的易損零件數(shù).
(1)若,求與的函數(shù)解析式;
(2)若要求 “需更換的易損零件數(shù)不大于”的頻率不小于,求的最小值;
(3)假設(shè)這臺機(jī)器在購機(jī)的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買臺機(jī)器的同時應(yīng)購買個還是個易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,且兩坐標(biāo)系相同的長度單位.已知點(diǎn)N的極坐標(biāo)為( , ),M是曲線C1:ρ=1上任意一點(diǎn),點(diǎn)G滿足 ,設(shè)點(diǎn)G的軌跡為曲線C2 .
(1)求曲線C2的直角坐標(biāo)方程;
(2)若過點(diǎn)P(2,0)的直線l的參數(shù)方程為 (t為參數(shù)),且直線l與曲線C2交于A,B兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com