設(shè)等差數(shù)列滿足,則m的值為

A.               B.              C.              D.26

 

【答案】

C

【解析】

試題分析:根據(jù)題意,由于等差數(shù)列滿足

故可知,可知d<0,開口向下那么可知二次函數(shù)對稱軸x=20,那么根據(jù)前n項和函數(shù)的關(guān)系可知,m的值為13,故選C.

考點:等差數(shù)列

點評:主要是考查了等差數(shù)列的通項公式和求和的運用,屬于基礎(chǔ)題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}滿足a5=11,a12=-3,{an}的前n項和Sn的最大值為M,則lgM=( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若橢圓E1
x2
a
2
1
+
y2
b
2
1
=1
和橢圓E2
x2
a
2
2
+
y2
b
2
2
=1
滿足
a2
a1
=
b2
b1
=m
 (m>0)
,則稱這兩個橢圓相似,m稱為其相似比.
(1)求經(jīng)過點(2,
6
)
,且與橢圓
x2
4
+
y2
2
=1
相似的橢圓方程;
(2)設(shè)過原點的一條射線l分別與(1)中的兩個橢圓交于A、B兩點(其中點A在線段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)對于真命題“過原點的一條射線分別與相似比為2的兩個橢圓C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B兩點,P為線段AB上的一點,若|OA|、|OP|、|OB|成等差數(shù)列,則點P的軌跡方程為
x2
32
+
y2
(
3
2
2
)
2
=1
”.請用推廣或類比的方法提出類似的一個真命題,并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)已知數(shù)列{an}對任意的n≥2,n∈N*滿足:an+1+an-1<2an,則稱{an}為“Z數(shù)列”.
(1)求證:任何的等差數(shù)列不可能是“Z數(shù)列”;
(2)若正數(shù)列{bn},數(shù)列{lgbn}是“Z數(shù)列”,數(shù)列{bn}是否可能是等比數(shù)列,說明理由,構(gòu)造一個數(shù)列{cn},使得{cn}是“Z數(shù)列”;
(3)若數(shù)列{an}是“Z數(shù)列”,設(shè)s,t,m∈N*,且s<t,求證求證at+m-as+m<at-as

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省紹興市高一下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

設(shè)等差數(shù)列滿足,則m的值為           (    )

A.               B.              C.              D.26

 

查看答案和解析>>

同步練習冊答案