精英家教網 > 高中數學 > 題目詳情
已知某幾何體的三視圖如圖,其中正(主)視圖中半圓的半徑為1,則該幾何體的體積為( 。
A、24-
3
π
2
B、24-
π
3
C、24-π
D、24-
π
2
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:由三視圖可知,該幾何體是由一個長方體截去半個圓柱所得.
解答: 解:該幾何體是由一個長方體截去半個圓柱所得,
其中長方體的體積為V1=4×3×2=24;
半個圓柱的體積為V2=
1
2
•π•12×3
=
3
2
π

則V=24-
3
2
π

故選A.
點評:考查了學生的空間想象力及三視圖的等量關系.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若cosα-3sinα=
10
,則tanα=(  )
A、3
B、-
3
5
C、-3
D、
3
8

查看答案和解析>>

科目:高中數學 來源: 題型:

給出命題:若函數y=f(x)是冪函數,則函數y=f(x)的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

對于下列表格所示五個散點,已知求得的線性回歸直線方程為
y
=0.8x-155,則實數m的值為( 。
 x196197200203204
 y1367m
A、8B、8.2
C、8.4D、8.5

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示的程序是用來(  )
 
A、計算3×10的值
B、計算39
C、計算310的值
D、計算1×2×3×…×10的值

查看答案和解析>>

科目:高中數學 來源: 題型:

某單位有老年人28人,中年人44人,青年人72人.為了調查他們的身體狀況,需從他們中抽取一個容量為36的樣本,最適合抽取樣本的方法是( 。
A、簡單隨機抽樣
B、系統(tǒng)抽樣
C、分層抽樣
D、先從老年人中剔除一人,然后分層抽樣

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=
|x-2|-1
,求函數的定義域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C方程為
x2
16
+
y2
12
=1,已知P(2,3)、Q(2,-3)是橢圓上的兩點,A,B是橢圓上位于直線PQ兩側的動點.
(1)若直線AB的斜率為
1
2
,求四邊形APBQ面積的最大值;
(2)當A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=
2
,E、F分別為線段PD和BC的中點.
(Ⅰ)求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案