【題目】設(shè)函數(shù)f(x)=ex(x3﹣3x+3)﹣aex﹣x(x≥﹣2),若不等式f(x)≤0有解,則實(shí)數(shù)α的最小值為(
A.
B.2﹣
C.1﹣
D.1+2e2

【答案】C
【解析】解:f(x)≤0可化為
ex(x3﹣3x+3)﹣aex﹣x≤0,
即a≥x3﹣3x+3﹣
令F(x)=x3﹣3x+3﹣ ,
則F′(x)=3x2﹣3+ =(x﹣1)(3x+3+ex),
令G(x)=3x+3+ex , 則G′(x)=3﹣ex ,
故當(dāng)ex=3,即x=﹣ln3時(shí),
G(x)=3x+3+ex有最小值G(﹣ln3)=﹣3ln3+6=3(2﹣ln3)>0,
故當(dāng)x∈[﹣2,1)時(shí),F(xiàn)′(x)<0,x∈(1,+∞)時(shí),F(xiàn)′(x)>0;
故F(x)有最小值F(1)=1﹣3+3﹣ =1﹣ ;
故實(shí)數(shù)α的最小值為1﹣
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專(zhuān)著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就.其中《方田》一章中記載了計(jì)算弧田(弧田就是由圓弧和其所對(duì)弦所圍成弓形)的面積所用的經(jīng)驗(yàn)公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)為的弧田.其實(shí)際面積與按照上述經(jīng)驗(yàn)公式計(jì)算出弧田的面積之間的誤差為( )平方米.(其中

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC面積的大小為S,且3 =2S.
(1)求sinA的值;
(2)若C= , =16,求AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長(zhǎng)為2的等邊三角形,PC= ,M在PC上,且PA∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若命題“x0∈R,使得x02+mx0+2m﹣3<0”為假命題,則實(shí)數(shù)m的取值范圍是(
A.[2,6]
B.[﹣6,﹣2]
C.(2,6)
D.(﹣6,﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是ABBB1的中點(diǎn).

)證明: BC1//平面A1CD;

)設(shè)AA1= AC=CB=2AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于點(diǎn)F,若BF=FC=3,DF=FE=2.

(1)求證:ADAB=AEAC;
(2)求線段BC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且 ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2

(1)證明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=sinωx(ω>0),將f(x)的圖象向左平移 個(gè)單位從長(zhǎng)度后,所得圖象與原函數(shù)的圖象重合,則ω的最小值為(
A.
B.3
C.6
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案