【題目】某程序框圖如圖所示,則該程序運行后輸出的S的值為( )
A.1
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程是 (α為參數),以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=1.
(Ⅰ)分別寫出C1的極坐標方程和C2的直角坐標方程;
(Ⅱ)若射線l的極坐標方程θ= (ρ≥0),且l分別交曲線C1、C2于A、B兩點,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是( )
A. cm3
B. cm3
C. cm3
D. cm3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費用支出與銷售額之間有如下的對應數據(單位:萬元):
(1)求關于的線性回歸直線方程;
(2)據此估計廣告費用為10萬元時銷售收入的值.
(附:對于線性回歸方程,其中)
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣ax,g(x)= x2﹣lnx﹣ .
(1)若f(x)和g(x)在同一點處有相同的極值,求實數a的值;
(2)對于一切x∈(0,+∞),有不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,求實數a的取值范圍;
(3)設G(x)= x2﹣ ﹣g(x),求證:G(x)> ﹣ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市對貧困家庭自主創(chuàng)業(yè)給予小額貸款補貼,每戶貸款為2萬元,貸款期限有6個月、12個月、18個月、24個月、36個月五種,這五種貸款期限政府分別需要補助200元、300元、300元、400元,從2016年享受此項政策的困難戶中抽取了100戶進行了調查,選取貸款期限的頻數如表:
貸款期限 | 6個月 | 12個月 | 18個月 | 24個月 | 36個月 |
頻數 | 20 | 40 | 20 | 10 | 10 |
以上表各種貸款期限頻率作為2017年貧困家庭選擇各種貸款期限的概率.
(1)某小區(qū)2017年共有3戶準備享受此項政策,計算其中恰有兩戶選擇貸款期限為12個月的概率;
(2)設給享受此項政策的某困難戶補貼為ξ元,寫出ξ的分布列,若預計2017年全市有3.6萬戶享受此項政策,估計2017年該市共需要補貼多少萬元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點C到點F(1,0)的距離比到直線x=﹣2的距離小1,動點C的軌跡為E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m(km<0)與曲線E相交于A,B兩個不同點,且 ,證明:直線l經過一個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的首項a1=2,前n項和為Sn , 等比數列{bn}的首項b1=1,且a2=b3 , S3=6b2 , n∈N* .
(1)求數列{an}和{bn}的通項公式;
(2)數列{cn}滿足cn=bn+(﹣1)nan , 記數列{cn}的前n項和為Tn , 求Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com