已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0).求動點M的軌跡方程,說明它表示什么曲線.

【答案】分析:設(shè)點M的坐標為(x,y),欲求動點M的軌跡方程,即尋找x,y間的關(guān)系式,結(jié)合題中條件列式化簡即可得;最后對參數(shù)λ分類討論看方程表示什么曲線即可.
解答:解:如圖,設(shè)MN切圓于N,則動點M組成的集合是
P={M||MN|=λ|MQ|},式中常數(shù)λ>0.因為圓的半徑|ON|=1,所以|MN|2=|MO|2-|ON|2=|MO|2-1.設(shè)點M的坐標為(x,y),則
整理得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0.
經(jīng)檢驗,坐標適合這個方程的點都屬于集合P.故這個方程為所求的軌跡方程.
當λ=1時,方程化為x=,它表示一條直線,該直線與x軸垂直且交x軸于點(,0),
當λ≠1時,方程化為(x-2+y2=它表示圓,該圓圓心的坐標為(,0),半徑為
點評:本小題考查曲線與方程的關(guān)系,軌跡的概念等解析幾何的基本思想以及綜合運用知識的能力.直接法:直接法是將動點滿足的幾何條件或者等量關(guān)系,直接坐標化,列出等式化簡即得動點軌跡方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0).求動點M的軌跡方程,說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知直角坐標平面上點Q(k,0)和圓C:x2+y2=1;動點M到圓的切線長與Q|
的比值為2.
(1)當 k=2 時,求點M 的軌跡方程.
(2)當 k∈R 時,求點M 的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數(shù)2,求動點M的軌跡方程,說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于
2
.求動點M的軌跡方程,并說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0),求動點M的軌跡方程,并說明它表示什么曲線.

查看答案和解析>>

同步練習冊答案