精英家教網 > 高中數學 > 題目詳情

已知,,且.求證:

詳見解析

解析試題分析:由柯西不等式
試題解析:因為
,      8分
當且僅當,即時,取等,
所以.                                 10分
考點:利用柯西不等式證明

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

三棱錐的四個頂點都在半徑為4的球面上,且三條側棱兩兩互相垂直,則該三棱錐側面積的最大值為                .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,記的解集為M,的解集為N.
(1)求M;
(2)當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當a=-2時,求不等式f(x)<g(x)的解集;
(2)設a>-1,且當x∈[-,)時, f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a,b,c為三角形的三條邊,求證:,,也可以構成一個三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+ax+b,當p,q滿足p+q=1時,證明:pf(x)+qf(y)≥f(px+qy)對于任意實數x,y都成立的充要條件是0≤p≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}滿足a1=2,an+1·an(n∈N+).
(1)求a2,a3,并求數列{an}的通項公式.
(2)設cn=,求證:c1+c2+c3+…+cn<.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園ABCD,公園由長方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).

(1)若設休閑區(qū)的長和寬的比=x,求公園ABCD所占面積S關于x的函數解析式.
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬應如何設計?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知:R.
求證:

查看答案和解析>>

同步練習冊答案