4.已知實(shí)數(shù)a,b滿足$\frac{9}{{a}^{2}}$+$\frac{4}{^{2}}$=1,則a2+b2的最小值是25.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:a2+b2=(a2+b2)($\frac{9}{{a}^{2}}$+$\frac{4}{^{2}}$)=9+4+$\frac{9^{2}}{{a}^{2}}$+$\frac{4{a}^{2}}{^{2}}$≥13+2$\sqrt{\frac{9^{2}}{{a}^{2}}•\frac{4{a}^{2}}{^{2}}}$=13+12=25,當(dāng)且僅當(dāng)a2=15,b2=10取等號,
故a2+b2的最小值是25,
故答案為:25

點(diǎn)評 熟練掌握基本不等式的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)是奇函數(shù)的是(  )
A.f(x)=-|sin x|B.f(x)=cos(-|x|)C.f(x)=sin|x|D.f(x)=x•sin|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=i(1-$\frac{1}{i}$)在復(fù)平面上對應(yīng)的點(diǎn)Z位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題p:4<1和命題q:4>2構(gòu)成的“p∧q”形式的命題為4<1且4>2,它是假(填“真”或“假”)命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC中,角A、B、C的對邊分別為a、b、c,且$\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}$=1.
(1)求角A;
(2)若a=4$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三個數(shù)60.7,(0.7)6,log0.76的大小順序是( 。
A.(0.7)6<log0.76<60.7B.(0.7)6<60.7<log0.76
C.log0.76<60.7<(0.7)6D.log0.76<(0.7)6<60.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=|x-3|+1在區(qū)間[0,9]上的值域是( 。
A.[4,7]B.[0,7]C.[1,7]D.[2,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在銳角△ABC中,已知|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=1,S△ABC=$\sqrt{3}$,則$|{\overrightarrow{BC}}|$等于( 。
A.$\sqrt{13}$B.13C.$\sqrt{17}$D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC,
(1)求證:AC⊥平面DEF;
(2)求平面DEF與平面ABD所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案