數(shù)列{an}中,a1=3,an+1=an+cn(c是常數(shù),n=1,2,3,…),且a1,a2,a3成公比不為1的等比數(shù)列.
(1)求c的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

(1)c=0或c=3(2)an(n2-n+2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等比數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前5項(xiàng)的和;
(3)若,求Tn的最大值及此時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=4an+1,設(shè)bn=an+1-2an.證明:數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:若數(shù)列{An}滿足An+1=,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是 “平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)公式及Tn關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}中,a1=1,an+1 (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an
(2)若數(shù)列{bn}滿足bn=(3n-1)an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλTn對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值.
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列
(1)求b1、b2、b3、b4的值;
(2)求數(shù)列的通項(xiàng)公式及數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前n項(xiàng)和為,
(I)證明:數(shù)列是等比數(shù)列;
(Ⅱ)若,數(shù)列的前n項(xiàng)和為,求不超過的最大整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案