分析 根據(jù)所給的二項式,利用二項展開式的通項公式寫出第r+1項,整理成最簡形式,令x的指數(shù)為$\frac{3}{2}$求得r,再代入系數(shù)求出結(jié)果.
解答 解:根據(jù)所給的二項式寫出展開式的通項,
Tr+1=C6rx ${\;}^{\frac{6-r}{2}}$(-a)rx-r=C6r(-a)rx${\;}^{\frac{6-3r}{2}}$,
展開式中含x${\;}^{\frac{3}{2}}}$的項的系數(shù)為30,
∴$\frac{6-3r}{2}$=$\frac{3}{2}$,
∴r=1,
∴C61(-a)=30,
解得a=-5,
故答案為:-5.
點評 本題考查二項式定理的應(yīng)用,本題解題的關(guān)鍵是正確寫出二項展開式的通項,在這種題目中通項是解決二項展開式的特定項問題的工具.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinA<sinC | B. | tanA<tanC | C. | cosA<cosC | D. | $\frac{1}{tanA}$<$\frac{1}{tanC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值$\frac{1}{2}$ | B. | 有最小值$\frac{1}{2}$ | C. | 有最大值$\frac{1}{4}$ | D. | 有最小值$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(1,+∞) | B. | (-1,1) | C. | (-∞,-1)∪(-1,1] | D. | (-∞,-1)∪(-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A≥B | B. | A>B | C. | A<B | D. | A≤B |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com