設變量x,y滿足
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則目標函數(shù)z=2x+y的最小值( 。
A、25B、23C、7D、5
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求最小值.
解答: 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點A時,直線y=-2x+z的截距最小,
此時z最。
x-y+2=0
x+y-4=0
,解得
x=1
y=3
,即A(1,3),
代入目標函數(shù)z=2x+y得z=1×2+3=5.
即目標函數(shù)z=2x+y的最小值為5.
故選:D.
點評:本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設直線x-ay-1=0被圓(x-1)2+(y-2)2=4截得的弦長為2
3
,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式|2x-3|>x的解集與不等式x2+ax+b>0的解集相等,則實數(shù)a+b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x<y<0且xy-(x2+y2)i=2-5i,則x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2,g(x)=(
1
2
x-m,當x∈[1,2]時,不等式f(x)≥g(x)恒成立,則實數(shù)m的取值范圍是( 。
A、[-
15
4
,+∞)
B、[-
1
2
,+∞)
C、(3,+∞)
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)滿足f(x+2)=f(x),且當x∈[-1,1]時f(x)=|x|,則函數(shù)g(x)=f(x)-sinx在區(qū)間[-π,π]上的零點個數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知X的分布列為:
X-101
P
1
2
1
3
1
6
則在下列式子中:①E(X)=-
1
3
;②D(X)=
23
27
;③P(X=0)=
1
3
.正確的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3+x在x=1處的切線為( 。
A、y=4x+4
B、y=4x-2
C、y=4-4x
D、y=4-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了下表:
喜愛打籃球不喜愛打籃球合計
男生20525
女生101525
合計302050
則根據(jù)表中的數(shù)據(jù),計算隨機變量K2的值,并參考有關公式,你認為性別與是否喜愛打籃球之間有關系的把握有( 。
A、97.5%B、99%
C、99.5%D、99.9%

查看答案和解析>>

同步練習冊答案