如圖,已知
E、F、G、M分別是四面體的棱AD、CD、BD、BC的中點(diǎn).求證:AM∥平面EFG.
證明 如圖,連 MD交FG于N,連EN.∵ GF為的△BCD中位線(xiàn),∴N為MD的中點(diǎn),∵ E為AD中點(diǎn),∴EN為△AMD的中位線(xiàn),∴EN∥AM.∵ 平面EFG,平面EFG,∴AM∥平面EFG. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
如圖,已知E,F與G分別為正方體ABCD-A1B1C1D1棱AB、B1C1與DD1上的一點(diǎn),試過(guò)E、F、G三點(diǎn)作正方體ABCD-A1B1C1D1的截面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:047
如圖,已知E、F、G、H、K、L分別為正方體AC1的棱,AA1、BB、BC、CC1、C1D1、A1D1的中點(diǎn),求證:EF、GH、KL三線(xiàn)共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:047
如圖,已知
E,F,G,H分別是空間四邊形AB-CD各邊AB,AD,BC,CD上的點(diǎn),且直線(xiàn)EF和GH交于點(diǎn)P.求證:B、D、P三點(diǎn)在同一條直線(xiàn)上.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
求證:EF、GH、KL三線(xiàn)共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:E、F、G、H四點(diǎn)共面;
(2)求證:BD//平面EFGH;
(3)設(shè)M是EG和FH的交點(diǎn),求證:對(duì)于空間任意一點(diǎn)O有
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com