考點(diǎn):函數(shù)的零點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意易得x1是函數(shù)y=3x+1與y=6-x的圖象交點(diǎn)的橫坐標(biāo),x2是函數(shù)y=log3(x+1)與y=6-x的圖象交點(diǎn)的橫坐標(biāo),由y=3x+1與y=6-x的圖象關(guān)于直線y=x+1對(duì)稱,作圖由中點(diǎn)坐標(biāo)公式可得.
解答:
解:∵x
1是方程3
x+
x=2的根,∴x
1是方程3
x+1=6-x的根,
∴x
1是函數(shù)y=3
x+1與y=6-x的圖象交點(diǎn)的橫坐標(biāo),
同理可得x
2是函數(shù)y=log
3(x+1)與y=6-x的圖象交點(diǎn)的橫坐標(biāo),
由y=3
x+1與y=6-x的圖象關(guān)于直線y=x+1對(duì)稱,
聯(lián)立
可解得
,
作圖易得x
1+x
2=2x
A=7
故答案為:7
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)并利用函數(shù)圖象的對(duì)稱性是解決問題的關(guān)鍵,屬中檔題.